CONTENT PAGE

S/NO	CHAPTER	PAGE NO
SECTI	ON I: MEASUREMENT	3
1	Measurement	4
SECTI	ON II: NEWTONIAN MECHANICS	9
2	Kinematics	10
3	Dynamics	11
4	Forces	14
5	Work, Energy and Power	16
6	Motion in a Circle	18
7	Gravitational Field	19
8	Oscillations	23
SECTI	ON III: THERMAL PHYSICS	27
9	Thermal Physics	28
SECTION IV: WAVES		31
10	Wave Motion	32
11	Superposition	35
SECTION V: ELECTRICITY & MAGNETISM		40
12	Electric Fields	41
13	Current of Electricity	45
14	D.C. Circuits	49
15	Electromagnetism	53
16	Electromagnetic Induction	58
17	Alternating Currents	63
SECTI	ON VI: MODERN PHYSICS	65
18	Quantum Physics	66
19	Lasers & Semiconductors	71
20	Nuclear Physics	74

SECTION I MEASUREMENT

Chapter 1: Measurement

- SI Units
- Errors and Uncertainties

- Scalars and Vectors

a. Recall the following base quantities and their units; mass (kg), length (m), time (s), current (A), temperature (K), amount of substance (mol).

Base Quantities	SI Units	SI Units	
Base Quantities	Name	Symbol	
Length	metre	m	
Mass	kilogram	kg	
Time	second	S	
Amount of substance	mole	mol	
Temperature	Kelvin	K	
Current	ampere	A	
Luminous intensity	candela	cd	

b. Express derived units as products or quotients of the base units and use the named units listed in 'Summary of Key Quantities, Symbols and Units' as appropriate.

A derived unit can be expressed in terms of products or quotients of base units.

Derived Quantities	Equation	Derived Units
Area (A)	$A = L^2$	m ²
Volume (V)	$V = L^3$	m ³
Density (ρ)	$\rho = \frac{m}{V}$	$\frac{\mathrm{kg}}{\mathrm{m}^3} = \mathrm{kg} \mathrm{m}^{-3}$
Velocity (v)	$v = \frac{L}{t}$	$\frac{m}{s} = m s^{-1}$
Acceleration (a)	$a = \frac{\Delta V}{t}$	$\frac{m s^{-1}}{s} = m s^{-2}$
Momentum (p)	p = m x v	$(kg)(m s^{-1}) = kg m s^{-1}$

Derived Quantities	Equation	Derived Unit		Derived Units	
Deriveu Quantities	Equation	Special Name	Symbol	Derived Offics	
Force (F)	$F = \frac{\Delta p}{t}$	Newton	Ν	$\frac{\text{kg m s}^{-1}}{\text{s}} = \text{kg m s}^{-2}$	
Pressure (p)	$p = \frac{F}{A}$	Pascal	Ра	$\frac{\text{kg m s}^{-2}}{\text{m}^2} = \text{kg m}^{-1} \text{ s}^{-2}$	
Energy (E)	E = F x d	joule	J	$(kg m s^{-2})(m) = kg m^2 s^{-2}$	
Power (P)	$P = \frac{E}{t}$	watt	W	$\frac{\text{kg m}^2 \text{ s}^{-2}}{\text{s}} = \text{kg m}^2 \text{ s}^{-3}$	
Frequency (f)	$f = \frac{1}{t}$	hertz	Hz	$\frac{1}{s} = s^{-1}$	
Charge (Q)	Q = I x t	coulomb	С	As	
Potential Difference (V)	$V = \frac{E}{Q}$	volt	V	$\frac{\text{kg m}^2 \text{ s}^{-2}}{\text{A s}} = \text{kg m}^2 \text{ s}^{-3} \text{ A}^{-1}$	
Resistance (R)	$R = \frac{V}{I}$	ohm	Ω	$\frac{\text{kg m}^2 \text{ s}^{-3} \text{ A}^{-1}}{\text{A}} = \text{kg m}^2 \text{ s}^{-3} \text{ A}^{-2}$	

C.	Show an understanding of and use the conventions for labelling graph axes and table columns as set out in the ASE publication SI Units, Signs, Symbols and Systematics (The ASE Companion to 5-16 Science, 1995).			
	Self-explanatory			
d.	Use the following prefixes and their symbols to indicate decimal sub-multiples or multiples of both base and derived units: pico (p), nano (n), micro (μ), milli (m), centi (c), deci (d), kilo (K), mega (M), giga (G), tera (T).			
	Multiplying Factor	Prefix	Symbol	
	10^{12}	рісо	p	
	10 -	nano	n	
	10	micro	μ	
	10		m	
	10	deci	d	
	10^{-10}	kilo		
	10 ⁶	mega	M	
	10 ⁹	giga	G	
	10 ¹²	tera	T	
е.	Make reasonable estimates o	f physical quantities include	ed within the syllabus.	
	When making an estimate, it is an estimate is not very precise.	only reasonable to give the f	gure to <u>1 or at most 2 significant figures</u> since	
	Physical Quantity		Bossonable Estimate	
	Mass of 3 caps (330 ml) of C	ako (
	Mass of a medium-sized car		1 Kg	
	Length of a football field		100 m	
	Reaction time of a young mar	1	025	
	 Occasionally, students are asked to estimate the area under a graph. The usual method counting squares within the enclosed area is used. (eg. Topic 3 (Dynamics), N94P2Q1c) Often, when making an estimate, a formula and a simple calculation may be involved. 			
	EXAMPLE 1E1 Estimate the average running speed of a typical 17-year-old's 2.4-km run.			
	velocity = $\frac{ds}{t}$	me		
	= 1	$\frac{2400}{2.5 \times 60} = 3.2$		
	<u>≈ 3</u>	<u>m s⁻¹</u>		
	EXAMPLE 1E2 (N08/ I/ 2) Which estimate is realistic?			
	Option	Explanation		
	A The kinetic energy of a	A bus of mass <i>m</i> travelling	on an expressway will travel between 50 to	
	bus travelling on an expressway is 30 000 J	80 km h ⁻¹ , which is 13.8 to $\frac{1}{2}m(18^2) = 162m$. Thus, for $m = 185$ kg, which is an abs	22.2 m s ⁻¹ . Thus, its KE will be approximately its KE to be 30 000J: $162m = 30 000$. Thus, urd weight for a bus; ie. This is not a realistic	
	B The power of a domestic light is 300 W.	A single light bulb in the h Thus, a <i>domestic</i> light is un is rather high.	nouse usually runs at about 20 W to 60 W. likely to run at more than 200W; this estimate	
	C The temperature of a hot oven is 300 K.	300K = 27 °C. Not very hot.		

SECTION II NEWTONIAN MECHANICS

Cha	Chapter 2: Kinematics - Rectilinear Motion - Non-linear Motion		
а.	Define displace	ment, speed, velocity and acceleration.	
	Distance:	Total length covered irrespective of the direction of motion.	
	Displacement:	Distance moved in a certain direction	
	Speed:	Distance travelled per unit time.	
	Velocity:	is defined as the rate of change of displacement, or, displacement per unit time { NOT : displacement <u>over</u> time, nor, displacement <u>per second</u> , nor, rate of change of displacement per unit time}	
	Acceleration:	is defined as the rate of change of velocity.	
b.	Use graphical acceleration.	methods to represent distance travelled, displacement, speed, velocity and	
	Self-explanatory		
c.	Find displaceme	ent from the area under a velocity-time graph.	
	The area under a	a velocity-time graph is the <u>change</u> in displacement.	
d.	Use the slope o	f a displacement-time graph to find velocity.	
	The gradient of a	displacement-time graph is the {instantaneous} velocity.	
e.	Use the slope o	f a velocity-time graph to find acceleration.	
	The gradient of a	velocity-time graph is the acceleration.	
f. g.	Derive, from the definitions of velocity and acceleration, equations that represent uniformly accelerated motion in a straight line. Solve problems using equations which represent uniformly accelerated motion in a straight line, including the motion of bodies falling in a uniform gravitational field without acceleration.		
	1. $v = u + a$ 2. $s = \frac{1}{2} (u$ 3. $v^2 = u^2$ 4. $s = ut$	a t: derived from definition of acceleration: $a = (v - u) / t$ u + v) t: derived from the area under the v-t graph + 2 a s: derived from equations (1) and (2) + $\frac{1}{2}$ a t ² : derived from equations (1) and (2)	
	These equations {hence, for eg., a	apply only if the motion takes place <u>along a straight line</u> and the <u>acceleration is constan</u> ir resistance must be negligible.}	
h.	Describe qualita	atively the motion of bodies falling in a uniform gravitational field with air resistance.	
	Consider a body	moving in a uniform gravitational field under 2 different conditions:	
	<u>A WITHO</u>	UT AIR RESISTANCE	
		⁽²⁾ Highest point ⁽²⁾ Highest point ⁽²⁾ Moving up ⁽³⁾ Moving down ⁽²⁾ W	
	<u>Assuming neglig</u> the weight of the Thus, the <u>gradie</u>	<i>ible air resistance</i> , whether the body is moving up, or at the highest point or moving down, body, W, is the <u>only force</u> acting on it, causing it to experience a <u>constant acceleration</u> . <u>nt</u> of the v-t graph is <u>constant throughout</u> its rise and fall. The body is said to undergo <i>free</i>	

fall.		
B WITH AIR R	ESISTANCE	
	Terminal velocity ① Mov ③	ing up () () () () () () () () () ()
 If air resistance is NOT negligible and if it is projected upwards with the same initial velocity. If air resistance is NOT negligible and if it is projected upwards with the same initial velocity. 		
	x direction (borizontal – avis)	v direction (vertical – axis)
s (displacement)	$s_x = u_x t$ $s_x = u_x t + \frac{1}{2}a_x t^2$	$s_y = u_y t + \frac{1}{2} a_y t^2$ (Note: If projectile ends at same level as the start, then s _y = 0)
u (initial velocity)	Ux	u _y
v (final velocity)	$v_x = u_x + a_x t$ (Note: At max height, $v_x = 0$)	$v_y = u_y + at$ $v_y^2 = u_y^2 + 2 a s_y$
a (acceleration)	$\mathbf{a}_{\mathbf{x}}$ (Note: Exists when a force in x direction present)	$\mathbf{a}_{\mathbf{y}}$ (Note: If object is falling, then $\mathbf{a}_{\mathbf{y}}$ = -g)
t (time)	t	t
	Parabolic Motion: tan θ θ : direction of tangential velocity {N	$= \frac{V_{v}}{V_{x}}$ NOT: $\tan \theta = \frac{S_{v}}{S_{x}}$

Cha	pter 3: Dynamics
	- Newton's laws of motion
-	- Linear momentum and its conservation
a.	Newton's First Law Every body continues in a state of rest or uniform motion in a straight line unless a net (external) force acts
	on it.
	The rate of change of momentum of a body is directly proportional to the net force acting on the body, and the momentum change takes place in the direction of the net force.
	<u>Newton's Third Law</u> When object X exerts a force on object Y, object Y exerts a force of the same type that is equal in magnitude and opposite in direction on object X.
	The two forces ALWAYS act on different objects and they form an action-reaction pair.
b.	Show an understanding that mass is the property of a body which resists change in motion.
	Mass: is a measure of the amount of matter in a body, & is the <u>property of a body which resists change in</u> <u>motion</u> .
c.	Describe and use the concept of weight as the effect of a gravitational field on a mass.
	Weight: is the force of gravitational attraction (exerted by the Earth) on a body.
d.	Define linear momentum and impulse.
	Linear momentum of a body is defined as the product of its mass and velocity ie $\mathbf{p} = \mathbf{m} \mathbf{v}$
	Impulse of a force <i>I</i> is defined as the product of the force and the time Δt during which it acts
	ie I = F x Δt {for force which is <u>const</u> over the duration Δt }
	For a variable force, the impulse = Area under the F-t graph { JFdt; may need to "count squares"}
	Impulse is <u>equal in magnitude</u> to the change in momentum of the body acted on by the force. Hence the change in momentum of the body is equal in mag to the area under a (net) force-time graph. { <u>Incorrect</u> to <u>define</u> impulse as <i>change in momentum</i> }
е.	Define force as rate of change of momentum.
	Force is defined as the rate of change of momentum, ie $F = \frac{m(v - u)}{t} = ma$ or $F = v \frac{dm}{dt}$
	The {one} Newton is defined as the force needed to accelerate a mass of 1 kg by 1 m s ⁻² .
f.	Recall and solve problems using the relationship $F = ma$ appreciating that force and acceleration are always in the same direction.
	Self-explanatory
g.	State the principle of conservation of momentum.
	Principle of Conservation of Linear Momentum: When objects of a system interact, their total momentum before and after interaction are equal <u>if no net (external) force acts on the system</u> .
	or, The total momentum of an <u>isolated</u> system is constant ie $m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$ if net F = 0 {for all collisions }
	NB: Total momentum DURING the interaction/collision is also conserved.
h.	Apply the principle of conservation of momentum to solve problems including elastic and inelastic

	interactions between two bodie required.)	es in one dimension. (Knowledge of coefficient of restitution is not
	(Perfectly) elastic collision:	Both momentum & kinetic energy of the system are conserved.
	Inelastic collision:	Only momentum is conserved, total kinetic energy is not conserved.
	Perfectly inelastic collision:	Only momentum is conserved, and the particles stick together after collision. (i.e. move with the same velocity.)
i.	Recognise that, for a perfectly elastic collision between two bodies, the relative speed of approach is equal to the relative speech of separation.	
	For all <i>elastic</i> collisions, u ₁ – u ₂	$= v_2 - v_1$
	ie. relative speed of approach =	relative speed of separation
	or, $\frac{1}{2} m_1 u_1^2 + \frac{1}{2} m_2 u_2^2 = \frac{1}{2}$	$m_1v_1^2 + \frac{1}{2}m_2v_2^2$
j.	Show an understanding that, whether bodies, some change in	hilst the momentum of a system is always conserved in interactions n kinetic energy usually takes place.
	In inelastic collisions, total energy energy such as sound and heat er	v is conserved but Kinetic Energy may be converted into other forms of nergy.

Cha	pter 4: Forces
	- Types of force
	- Centre of gravity
	- Turning effects of forces
а.	Recall and apply Hooke's Law to new situations or to solve related problems.
	Within the limit of proportionality, the extension produced in a material is directly proportional to the force/load applied
	ie F = kx
	Force constant k = force per unit extension (F/x) {N08P3Q6b(ii)}
b.	Deduce the elastic potential energy in a deformed material from the area under a force-extension graph.
	Elastic potential energy/strain energy = Area under the F-x graph {May need to "count the squares"}
	For a material that obeys Hooke's law,
	Elastic Potential Energy, E = $\frac{1}{2}$ F x = $\frac{1}{2}$ k x ²
с.	Describe the forces on mass, charge and current in gravitational, electric and magnetic fields, as appropriate.
	Forces on Masses in Gravitational Fields - A region of space in which a <u>mass</u> experiences an (attractive) force due to the presence of <u>another mass</u> .
	Forces on Charge in Electric Fields - A region of space where a <u>charge</u> experiences an (attractive or repulsive) force due to the presence of <u>another charge</u> .
	Forces on Current in Magnetic Fields - Refer to Chapter 15
d.	Solve problems using p = ρgh.
	Hydrostatia Proceure n – eg h
	nyulostatic Plessule p = pg fi
	{or, pressure difference between 2 points separated by a vertical distance of h }
е. 4	Show an understanding of the origin of the upthrust acting on a body in a fluid.
۱.	State that an upthrust is provided by the fluid displaced by a submerged or floating object.
	Upthrust: An upward force exerted by a fluid on a submerged or floating object; arises because of the <u>difference in pressure</u> between the upper and lower surfaces of the object.
g.	Calculate the upthrust in terms of the weight of the displaced fluid.
h.	Recall and apply the principle that, for an object floating in equilibrium, the upthrust is equal to the weight of the new object to new situations or to solve related problems.
	Archimedes' Principle: Upthrust = weight of the fluid displaced by submerged object.
	ie Upthrust = Vol _{submerged} × ρ _{fluid} × g
i.	Show a qualitative understanding of frictional forces and viscous forces including air resistance. (No treatment of the coefficients of friction and viscosity is required.)
	Frictional Forces:
	• The contact force between two surfaces = $(friction^2 + normal reactionn^2)^{1/2}$
	The component along the surface of the contact force is called friction .
	 Friction between 2 surfaces always opposes relative motion (or attempted motion), and Its value varies up to a maximum value (called the static friction)
	Viscous Forces:

	A force that opportunity	oses the motion of an object <u>in a fluid;</u>	
	Only exists when there is (relative) motion.		
	 Magnitude of vis 	cous force increases with the speed of the object	
j.	Use a vector triangle to	represent forces in equilibrium.	
	See Chapter 1i 1k	· · ·	
	•••••;;; ····		
k.	Show an understanding its centre of gravity.	that the weight of a body may be taken as acting at a single point known as	
	Centre of Gravity of an considered to act.	object is defined as that pt through which the entire weight of the object may be	
١.	Show an understanding	that a couple is a pair of forces which tends to produce rotation only.	
	A couple is a pair of force	es which tends to produce rotation only.	
m.	Define and apply the mo	oment of a force and the torque of a couple.	
	Moment of a Force:	The product of the force and the perpendicular distance of its line of action to the pivot	
	Torque of a Couple:	The produce of one of the forces of the couple and the perpendicular distance between the lines of action of the forces. (WARNING: NOT an action-reaction pair as they act on the same body.)	
n.	Show an understanding equilibrium.	that, when there is no resultant force and no resultant torque, a system is in	
	Conditions for Equilibrie 1. The resultant for 2. The resultant mo	um (of an extended object): ce acting on it in any direction equals zero ment about any point is zero.	
	If a mass is acted upon by 1. The lines of action 2. When a vector of triangle), with th	y <u>3 forces</u> only and remains in <u>equilibrium</u> , then on of the 3 forces must pass through a <u>common point</u> . liagram of the three forces is drawn, the forces will form a closed triangle (vector e 3 vectors pointing in the <u>same orientation</u> around the triangle.	
ο.	Apply the principle of m	oments to new situations or to solve related problems.	
	Principle of Moments:	For a body to be in equilibrium, the sum of all the anticlockwise moments <i>about any point</i> must be equal to the sum of all the clockwise moments about that same point.	

Cha	pter 5: Work, Energy and Power			
	- Work - Energy conversion and conservation			
	 Potential energy and kinetic energy Power 			
a.	Show an understanding of the concept of work in terms of the product of a force and displacement			
b.	in the direction of the force. Calculate the work done in a number of situations including the work done by a gas which is			
	expanding against a constant external pressure: $W = p\Delta V$.			
	Work Done by a force is defined as the product of the force and displacement (of its point of application) in the direction of the force			
	ie W = Fscosθ			
	Negative work is said to be done by F if x or its compo. is anti-parallel to F			
	If a <u>variable</u> force F produces a displacement in the direction of F, the work done is determined from the <u>area</u> <u>under F-x graph</u> . {May need to find area by "counting the squares". }			
C.	Give examples of energy in different forms, its conversion and conservation, and apply the principle of energy conservation to simple examples.			
	By Principle of Conservation of Energy,			
	Work Done on a system =			
	KE gain + GPE gain + Thermal Energy generated {ie Work done against friction}			
d.	Derive, from the equations of motion, the formula $E_k = \frac{1}{2}mv^2$.			
	Consider a rigid object of mass m that is initially at rest. To accelerate it uniformly to a speed v, a constant net force F is exerted on it, parallel to its motion over a displacement s.			
	Since F is constant, acceleration is constant,			
	Therefore, using the equation: $v^2 = u^2 + 2 a s$,			
	a s $=\frac{1}{2}(v^2 - u^2)$			
	Since kinetic energy is equal to the work done on the mass to bring it from rest to a speed v,			
	The kinetic energy, E_{K} = Work done by the force F			
	= F s			
	= 11 as $-\frac{1}{2} \text{ m} (y^2 - y^2)$			
e.	Recall and apply the formula $E_k = \frac{1}{2}mv^2$.			
	Self-explanatory			
f.	Distinguish between gravitational potential energy, electric potential energy and elastic potential energy.			
	Gravitational potential energy : this arises in a system of <i>masses</i> where there are attractive gravitational forces between them. The gravitational potential energy of an object is the energy it possesses by virtue of its position in a gravitational field.			
	Elastic potential energy : this arises in a system of atoms where there are either attractive or repulsive short-range inter-atomic forces between them. (From Topic 4, E. P. E. = $\frac{1}{2}$ k x ² .)			
	Electric potential energy: this arises in a system of charges where there are either attractive or repulsive			

	electric forces between them.		
g.	Show an understanding of and use the relationship between force and potential energy in a uniform field to solve problems.		
	The potential energy, U, of a body in a force field {whether gravitational or electric field} is related to the force F it		
	experiences by: $\mathbf{F} = -\frac{dU}{dx}$.		
h.	Derive, from the defining equation $W = Fs$ the formula $E_p = mgh$ for potential energy changes near the Earth's surface.		
	Consider an object of mass m being lifted vertically by a force F, without acceleration, from a certain height h_1 to a height h_2 . Since the object moves up at a constant speed, F is equal to m g. The change in potential energy of the mass = Work done by the force F = F s = F h = m g h		
i.	Recall and use the formula E_p = mgh for potential energy changes near the Earth's surface.		
	Self-explanatory		
j.	Show an appreciation for the implications of energy losses in practical devices and use the concept of efficiency to solve problems.		
	Efficiency: The ratio of (useful) output energy of a machine to the input energy.		
	ie = Useful Output Energy × 100 % = Useful Output Power × 100 %		
k.	Define power as work done per unit time and derive power as the product of force and velocity.		
	Power {instantaneous} is defined as the work done per unit time.		
	$P = \frac{\text{Total Work Done}}{\text{Total Time}}$ $= \frac{W}{t}$		
	Since work done W = F x s, P = $\frac{F x s}{t}$ = F v		
	 for object moving at <u>const speed</u>: F = Total resistive force {equilibrium condition} for object beginning to <u>accelerate</u>: F = Total resistive force <u>+ ma {N07P1Q10,N88P1Q5}</u> 		

Cha	pter 6: Motion in a Circle
	- Kinematics of uniform circular motion
	- Centripetal acceleration
a.	Express angular displacement in radians.
	Radian (rad) is the S.I. unit for angle, θ and it can be related to degrees in the following way. In one complete revolution, an object rotates through 360°, or 2π rad.
	As the object moves through an angle θ , with respect to the centre of rotation, this angle θ is known as the angular displacement .
b.	Understand and use the concept of angular velocity.
	Angular velocity (ω) of the object is the rate of change of angular displacement with respect to time.
	$\omega = \frac{\sigma}{t} = \frac{2\pi}{T}$ (for one complete revolution)
c.	Recall and use v = r ₀ .
	Linear velocity, v, of an object is its instantaneous velocity at any point in its circular path.
	$v = \frac{\text{arc length}}{\text{time taken}} = \frac{r\theta}{t} = r\omega$
	Note : (i) The direction of the linear velocity is at a <i>tangent</i> to the circle described at that point. Hence it is sometimes referred to as the <i>tangential velocity</i> .
	(ii) ω is the same for every point in the rotating object, but the linear velocity <i>v</i> is greater for points further from the axis.
d.	Describe qualitatively motion in a curved path due to a perpendicular force, and understand the centripetal acceleration in the case of a uniform motion in a circle.
	A body moving in a circle at a <u>constant speed</u> changes velocity {since its direction changes}. Thus, it <i>always</i> experiences an acceleration, a force and a change in momentum.
e.	Recall and use centripetal acceleration $a = r\omega^2$, $a = \frac{v^2}{r}$.
	Centripetal acceleration, $\mathbf{a} = \mathbf{r} \omega^2$ $= \frac{\mathbf{v}^2}{\mathbf{r}}$ {in magnitude}
f.	Recall and use centripetal force $F = mr\omega^2$, $F = \frac{mv^2}{r}$.
	Centripetal force is the resultant of all the forces that act on a system in circular motion.
	{It is not a particular force; "centripetal" means "centre-seeking". Also, when asked to draw a diagram showing all the forces that act on a system in circular motion, it is wrong to include a force that is labelled as "centripetal force". }
	Centripetal force, F = m r $\omega^2 = \frac{mv^2}{r}$ {in magnitude}
	A person in a satellite orbiting the Earth experiences " weightlessness " although the gravi field strength at the height is not zero because the person and the satellite would both have the <u>same acceleration</u> ; hence the contact force between man & satellite/ <u>normal reaction on the person is zero {</u> Not because the field strength is negligible.}

Cha	pter 7: Gravitation
	- Gravitational Field
	- Field of a point mass
	- Field near to the surface of the Earth
а.	- Gravitational Potential Show an understanding of the concept of a gravitational field as an example of field of force and define gravitational field strength as force per unit mass
	Gravitational field strength at a point is defined as the gravitational force per unit mass at that point.
h	GMm
D .	Recall and use Newton's law of gravitation in the form $F = \frac{Gravitation}{r^2}$
	Newton's law of gravitation : The (mutual) gravitational force F between two point masses M and m separated by a distance r is given by
	$\mathbf{F} = \frac{\mathbf{GMM}}{r^2}$ where G: Universal gravitational constant
	or , the gravitational force of between two point masses is proportional to the product of their masses & inversely proportional to the square of their separation.
c.	Derive, from Newton's law of gravitation and the definition of gravitational field strength, the
	equation $g = \frac{GM}{L^2}$ for the gravitational field strength of a point mass.
	Gravitational field strength at a <i>point</i> is the gravitational force per unit mass at that point. It is a vector and its S.I. unit is N kg ⁻¹ .
	By definition, $g = \frac{F}{m}$
	By Newton Law of Gravitation, $F = \frac{GMm}{r^2}$
	Combining, magnitude of $g = \frac{GM}{r^2}$
	Therefore $\mathbf{g} = \frac{\mathbf{GM}}{\mathbf{r}^2}$, M = Mass of object "creating" the field
d.	Recall and apply the equation $g = \frac{GM}{L^2}$ for the gravitational field strength of a point mass to new
	situations or to solve related problems.
	Example 7D1 Assuming that the Earth is a uniform sphere of radius 6.4 x 10^6 m and mass 6.0 x 10^{24} kg, find the gravitational field strength g at a point
	(a) <u>on the surface,</u>
	$g = \frac{GM}{r^2} = (6.67 \times 10^{-11})(6.0 \times 10^{24})/(6.4 \times 10^6)^2$ = 9.77 m s ⁻²
	(b) <u>at height 0.50 times the radius of above the Earth's surface.</u>
	$g = \frac{GM}{r^2} = (6.67 \times 10^{-11})(6.0 \times 10^{24}) / (1.5 \times 6.4 \times 10^6)^2$ $= 4.34 \text{ m s}^{-2}$
	Example 7D2 The acceleration due to gravity at the Earth's surface is 9.80 m s ⁻² . Calculate the acceleration due to gravity on a planet which has the same density but twice the radius of Earth.

	$g = \frac{GM}{r^2}$
	g _P M _P r _E ²
	$\frac{d}{g_E} = \frac{1}{M_E r_P r_P} z$
	$\frac{4}{2}\pi r_{P}^{3} r_{E}^{2} \rho_{P}$
	$=\frac{5}{4}$
	<u></u> 3 ^π Γε [°] Γ ^ρ ^ρ Ε
	= ^r P
	r _e - 2
	- 2
	Hence $g_P = 2 \times 9.81 = 19.6 \text{ m s}^{-2}$.
е.	Show an appreciation that on the surface of the Earth g is approximately constant and is called the
	acceleration of free fall.
	Assuming that Earth is a uniform sphere of mass M. The magnitude of the gravitational force from Earth on
	a particle of mass m, located outside Earth a distance r from the centre of the Earth is
	$F = \frac{GMm}{2}$. When a particle is released, it will fall towards the centre of the Earth, as a result of the
	r gravitational force with an acceleration a.
	gravitational force with an accordination ag.
	i.e. , $F_G = ma_g$
	$a_g = \frac{GM}{r^2}$
	Hence $a_g = g$
	Thus gravitational field strength g is also numerically equal to the acceleration of free fall
	Example 7E1
	A snip is at rest on the Earth's equator. Assuming the earth to be a perfect sphere of radius R and the acceleration due to gravity at the poles is g_{0} , express its apparent weight. N, of a body of mass m in terms
	of m, g_o , R and T (the period of the earth's rotation about its axis, which is one day).
	Ans
	At the North Pole, the gravitational attraction is
	$F = \frac{GM_Em}{m^2} = mq_o$
	At the equator $R^2 = R^2$
	Normal Reaction
	Force on ship by Earth = Gravitational attraction - centripetal force
	$N = mg_{\circ} - mR\omega^{2}$
	$= mg_o - mR \left(\frac{2\Pi}{T}\right)^2$
t.	Define potential at a point as the work done in bringing unit mass from infinity to the point.
	Gravitational potential at a point is defined as the work done (by an external agent) in bringing a unit mass
	from infinity to that point (without changing its kinetic energy).
q.	• GM
0	Solve problems by using the equation $\phi = -\frac{1}{r}$ for the potential in the field of a point mass.
	W GM
	$\phi = \frac{\partial w}{\partial r} = -\frac{\partial w}{\partial r}$
	 wny gravitational potential values are always negative? As the gravitational force on the mass is attractive, the work done by an ext agent in bringing unit.
	mass from infinity to any point in the field will be <u>negative</u> work{as the force exerted by the ext
	agent is <u>opposite</u> in direction to the displacement to ensure that $\Delta KE = 0$ }
	- Hence by the definition of <i>negative work</i> , all values of ϕ are negative.

	Re	elation between g and ϕ :	$\mathbf{g} = -\frac{\mathbf{d}\boldsymbol{\phi}}{\mathbf{d}\boldsymbol{r}} = -$ gradient of ϕ -r graph	{Analogy: E =-dV/dx}
	Gravitational potential energy U of a mass m at a point in the gravitational field of another mass M , is the work done in bringing that mass m {NOT: <i>unit mass,</i> or <i>a mass</i> } from infinity to that point.			
	$\rightarrow U = m \phi = -\frac{GMm}{r}$			
	Chang	ge in GPE, $\Delta U = m g h$ on	ly if <i>g is constant</i> over the distance	h ; { \Rightarrow h<< radius of planet}
h	Boood	otherwise, must	use: $\Delta U = m \phi_f - m \phi_i$	tive concets of gravitational and
	electri	ic fields.	certain quantative and quantita	
		Aspects	Electric Field	Gravitational Field
	1.	Quantity interacting with	Charge Q	Mass M
	2.	Definition of Field	Force per unit positive charge	Force per unit mass
		onengui	$E = \frac{1}{q}$	$g = \frac{1}{M}$
	3.	Force between two <u>Point</u> Charges or Masses	Coulomb's Law: $F_e = \frac{Q_1 Q_2}{4\pi s_r^2}$	Newton's Law of Gravitation: $F_g = G \frac{GMm}{r^2}$
	4.	Field Strength of isolated Point Charge or Mass	$E = \frac{Q}{4\pi\epsilon_0 r^2}$	$g = G \frac{GM}{r^2}$
	5.	Definition of Potential	Work done in bringing a unit positive charge from infinity to	Work done in bringing a unit
			the point.	mass from infinity to the point. $\phi = \frac{W}{M}$
			$V = \overline{Q}$	[†] M
	6.	Potential of isolated Point Charge or Mass	$V = \frac{Q}{4\pi\epsilon_o r}$	$\phi = -G \frac{M}{r}$
	7.	Change in Potential Energy	$\Delta U = q \Delta V$	$\Delta U = m \Delta \phi$
i.	Analy	se circular orbits in invers	e square law fields by relatir	ng the gravitational force to the
	centri	petal acceleration it causes.		
	Total	Energy of a Satellite = GPE +	$KE = (-\frac{GMm}{r}) + (\frac{1GMm}{2})$	
	Escap	e Speed of a Satellite		
	By Co	nservation of Energy,		
	Initial I	KE+ Initial GPE = Final KE	+ Final GPE	
	$\frac{1}{2}mv_{E}^{2}$	$+ \left(-\frac{GMm}{r}\right) = 0$	+ 0	
	Thus e	escape speed, $v_E = \sqrt{\frac{2GM}{R}}$		
	Note :	Escape speed of an object is i	ndependent of its mass	
	For a s {Must	satellite in circular orbit, " always state what force is p	the centripetal force is provided roviding the centripetal force be	<u>by the gravitational force</u> . " fore following eqn is used!}
		Hence $\frac{GMm}{r^2} = \frac{mv^2}{r} = mrc$	$\omega^2 = mr \left(\frac{2\pi}{T}\right)^2$	
	A sate the gr accele	Ilite does not move in the dire avitational force exerted by t aration but not enough to also p	ction of the gravitational force {ie he Earth on the satellite is <u>just</u> ull it down towards the Earth.	it stays in its circular orbit} because: sufficient to cause the centripetal

	{This explains also why the Moon does not fall towards the Earth}
j.	Show an understanding of geostationary orbits and their application.
	Geostationary satellite is one which is <u>always above a certain point on the Earth</u> (as the Earth rotates about its axis.)
	For a geostationary orbit: $T = 24$ hrs, orbital radius (& height) are fixed values from the centre of the Earth, ang velocity w is also a fixed value; rotates fr west to east. However, the <u>mass</u> of the satellite is <u>NOT a</u> <u>particular value</u> & hence the ke, gpe, & the centripetal force are also not fixed values {ie their values depend on the mass of the geostationary satellite.}
	A geostationary orbit must lie in the <u>equatorial plane</u> of the earth because it <u>must</u> accelerate in a plane where the <i>centre</i> of Earth lies since the <u>net force</u> exerted on the satellite is the <u>Earth's gravitational force</u> , which is <u>directed towards the <i>centre</i> of Earth</u> .
	{Alternatively, may explain by showing why it's impossible for a satellite in a non-equatorial plane to be geostationary.}

Cha	Chapter 8: Oscillations			
	- Simple harmonic motion			
	Damped and forced oscillations: resonance			
a.	Describe simple examples of free oscillations.			
	Self-explanatory			
h	Investigate the motion of	of an oscillator using ovporim	ontal and graphical mothods	
D.	investigate the motion of	of all oscillator using experim	ental and graphical methods.	
	Self-explanatory			
C.	Understand and use difference and express	the terms amplitude, perio the period in terms of both fre	d, frequency, angular frequency and phase equency and angular frequency.	
	Period	is defined as the time taken fo	or one complete oscillation.	
	Frequency	is defined as the number of or	scillations per unit time,	
		$f = \frac{1}{T}$		
	Angular frequency ω:	is defined by the eqn, $\omega =$ displacement (measured in	2 π f. It is thus the rate of change of angular radians per sec)	
	Amplitude	The maximum displacement f	rom the equilibrium position.	
	Phase difference φ:	A measure of how much on much a wave particle is out of	e wave is <u>out of step</u> with another wave, or how f phase with another wave particle.	
	$\phi = \frac{2\pi x}{\lambda} = \frac{t}{T} \times 2\pi$ {x = separation in the direction of wave motion between the 2 particles}			
d.	Recognise and use the	equation $a = -\omega^2 x$ as the defined	ning equation of simple harmonic motion.	
	Simple harmonic motion	n: An oscillatory motion in which	n the acceleration {or <u>restoring force</u> } is	
	 aiways proportio opposite in direct 	nal to, and tion to the displacement from a	certain fixed point/ equilibrium position	
	opposite in direc	alon to the displacement <u>inom c</u>	Certain fixed point equilibrium position	
	ie $a = -\omega^2 x$	(Defining equation of S.H.M)		
e.	Recall and use x = x _o si	n (ω t) as a solution to the equ	uation $a = -\omega^2 x$.	
f.	Recognise and use v = v _o cos (ω t) and v = ± $\omega \sqrt{x_o^2 - x^2}$			
	"Time Equations"		"Displacement Equations"	
	$x = x_0 \sin \omega t$	or $x = x_0 \cos(\omega t)$, etc	Displacement Equations	
	{depending on the	initial condition}		
	$v = \frac{dx}{dt} = \omega x_0 \cos \omega t$	t {assuming x= x₀sinωt}	$v = \pm \omega \sqrt{x_0^2 - x^2}$ (In Formula List)	
	u_1	cin(.)t)	(v - x graph is an ellipse)	
	$A = -\omega X = -\omega (X_0 S)$ KE = 1/2 mv ² = 1/2 m	$h(\omega x_{\alpha} \cos \omega t)^2$	$KF = \frac{1}{2} mv^2 = \frac{1}{2} m(v^2 (x_0^2 - x^2))$	
			(KE - x graph is a parabola)	
g.	Describe with graphical simple harmonic motion	l illustrations, the changes in n.	displacement, velocity and acceleration during	

	system.		
	Damping	refers to the loss of energy from an oscillating system to the environment due to dissipative forces {eg, friction, viscous forces, eddy currents}	
	Light Damping:	The system <u>oscillates</u> about the equilibrium position with <u>decreasing amplitude</u> over a period of time.	
	Critical Damping:	The system does <u>not</u> oscillate & damping is just adequate such that the system returns to its equilibrium position in the <u>shortest</u> possible time.	
	Heavy Damping:	The damping is so great that the displaced object <u>never oscillates</u> but returns to its equilibrium position <u>very very slowly</u> .	
j.	Describe practical exa	mples of forced oscillations and resonance.	
	Free Oscillation:	An oscillating system is said to be undergoing <i>free oscillations</i> if its oscillatory motion is <u>not</u> subjected to an external periodic driving force. The system oscillates at its natural freq.	
	Forced Oscillation:	In contrast to free oscillations, an oscillating system is said to undergo forced oscillations if it is subjected to an <u>input of energy from an external periodic</u> <u>driving force</u> The freq of the forced {or driven} oscillations will be <u>at the freq of the driving force</u> (called the driving frequency) is no longer at its own natural frequency.	
	Resonance:	A phenomenon whereby the <u>amplitude</u> of a system undergoing <u>forced</u> <u>oscillations</u> increases to a <u>maximum</u> . It occurs when <u>the frequency of the periodic driving force</u> is equal to the natural frequency of the system.	
	Effects of Damping on	Freq Response of a system undergoing forced oscillations	
	1) Resonant freq	uency decreases	
	2) Sharpness of	resonant peak decreases	
	3) Amplitude of fo	breed oscillation decreases	
k.	Describe graphically h natural frequency of frequency response ar	ow the amplitude of a forced oscillation changes with frequency near to the the system, and understand qualitatively the factors which determine the ad sharpness of the resonance.	
	Amplitude of forced	No damping Light damping Heavy damping f ₀	
I.	Show an appreciation circumstances in whic	that there are some circumstances in which resonance is useful and other h resonance should be avoided.	

Examples of Useful Purposes of Resonance

- (a) Oscillation of a child's swing.
- (b) Tuning of musical instruments.
- (c) Tuning of radio receiver Natural frequency of the radio is adjusted so that it responds resonantly to a specific broadcast frequency.
- (d) Using microwave to cook food Microwave ovens produce microwaves of a frequency which is equal to the natural frequency of water molecules, thus causing the water molecules in the food to vibrate more violently. This generates heat to cook the food but the glass and paper containers do not heat up as much.
- (e) Magnetic Resonance Imaging (MRI) is used in hospitals to create images of the human organs.
- (f) Seismography the science of detecting small movements in the Earth's crust in order to locate centres of earthquakes.

Examples of Destructive Nature of Resonance

- (a) An example of a disaster that was caused by resonance occurred in the United States in 1940. The Tarcoma Narrows Bridge in Washington was suspended by huge cables across a valley. Shortly after its completion, it was observed to be unstable. On a windy day four months after its official opening, the bridge began vibrating at its resonant frequency. The vibrations were so great that the bridge collapsed.
- (b) High-pitched sound waves can shatter fragile objects, an example being the shattering of a wine glass when a soprano hits a high note.
- (c) Buildings that vibrate at natural frequencies close to the frequency of seismic waves face the possibility of collapse during earthquakes.

SECTION III THERMAL PHYSICS

Cha	pter 9: Thermal Physics
	- Internal energy
	- Temperature scales
	- Specific latent heat
	- First law of thermodynamics
	- The ideal gas equation
	- Kinetic energy of a molecule
a.	Show an understanding that internal energy is determined by the state of the system and that it can be expressed as the sum of a random distribution of kinetic and potential energies associated with the molecules of a system.
	Internal Energy: is the sum of the kinetic energy of the molecules <u>due to its random motion</u> & the pe of the molecules due to the intermolecular forces.
	"Internal energy is determined by the state of the system". Explain what this means. Internal energy is determined by the values of the current state and is independent of how the state is arrived at. Thus if a system undergoes a series of changes from one state A to another state B, its change in internal energy is the same, regardless of which path {the changes in the p & V} it has taken to get from A to B.
b.	Relate a rise in temperature of a body to an increase in its internal energy.
	Since Kinetic Energy proportional to temp, and internal energy of the system = sum of its Kinetic Energy and Potential Energy, a rise in temperature will cause a rise in Kinetic Energy and thus an increase in internal energy.
с.	Show an understanding that regions of equal temperature are in thermal equilibrium.
	If two bodies are in thermal equilibrium , there is <u>no <i>net</i> flow of heat energy between them</u> and they have the <u>same temperature</u> . {NB: this <u>does not imply they must have the same <i>internal energy</i> as internal energy depends also on the <u>number of molecules</u> in the 2 bodies, which is <u>unknown</u> here}</u>
d.	Show an understanding that there is an absolute scale of temperature which does not depend on the property of any particular substance, i.e. the thermodynamic scale.
0.	which all substances have a minimum internal energy.
	Thermodynamic (Kelvin) scale of temperature: theoretical scale that is <i>independent</i> of the properties of any particular substance.
	An absolute scale of temp is a temp scale which does not depend on the property of any particular substance (ie the thermodynamic scale)
	Absolute zero: Temperature at which <u>all</u> substances have a <u>minimum</u> internal energy {NOT: zero internal energy.}
f.	Convert temperatures measured in Kelvin to degrees Celsius: T / K = T / °C + 273.15.
	$T/K = T/^{0}C + 273.15$, by definition of the Celsius scale.
g.	Define and use the concept of specific heat capacity, and identify the main principles of its determination by electrical methods.
	Specific heat capacity is defined as the amount of heat energy needed to produce <u>unit temperature</u> <u>change</u> {NOT: by 1 K} for <u>unit mass {NOT: 1 kg}</u> of a substance, without causing a change in state. i.e. $c = \frac{Q}{m\Delta T}$
	ELECTRICAL METHODS
h.	Define and use the concept of specific latent heat, and identify the main principles of its determination by electrical methods.

	Specific latent heat of vaporisation is defined as the amount of heat energy needed to change <u>unit mas</u> substance from liquid phase to gaseous phase without a change of temperature.					
	Spec subst	Specific latent heat of fusion is defined as the amount of heat energy needed to change <u>unit mass</u> substance from solid phase to liquid phase without a change of temperature				
		i.	e. $L = \frac{Q}{m}$ {for both cases	of vaporisation & melting}		
	<u>The s</u> {N06F	pecific latent heat of va P2Q2}	aporisation is greater than	the specific latent heat of	fusion for a given substance	
	-	During vaporisation	, there is a <u>greater</u> increas	<u>se in volume</u> than in fusio	n;	
	-	Thus <u>more work is</u>	done against atmospheric	pressure during vaporisa	tion.	
	-	The increase in vol hence, internal ene	also means the INCREAS	SE IN THE (MOLECULAI ore than that during melting	R) POTENTIAL ENERGY , & ng.	
	-	Hence by <u>1st Law</u> melting; hence l _v >	of Thermodynamics, heat If {since Q = ml = Δ U - W}	t supplied during vaporis	ation more than that during	
	{Note	:				
	1 2 3	. the use of compare 2. the increase in int 3. the system here is	rative terms: <i>greater, mo</i> ernal energy is due to an s NOT to be considered a	re, and > h increase in the PE, NO hs an ideal gas system	T KE of molecules	
	{Simil	arly, you need to expl	ain why, when a liq is bo nge. (N97P3Q5, [4 m]}	iling, thermal energy is l	being supplied, and yet, the	
	Evola		otic model for matter wh	W.		
i.	Expla i. ii. iii.	ain using a simple kin Melting and boiling t The specific latent same substance, Cooling effect accor	etic model for matter wh take place without a char heat of vaporisation is l npanies evaporation.	y nge in temperature, higher than specific lat	ent heat of fusion for the	
i.	Expla i. ii. iii.	ain using a simple kin Melting and boiling t The specific latent same substance, Cooling effect accor	etic model for matter wh take place without a char heat of vaporisation is l npanies evaporation.	y nge in temperature, higher than specific lat Boiling	ent heat of fusion for the	
i.	Expla i. ii. iii.	ain using a simple kin Melting and boiling to The specific latent same substance, Cooling effect accor	etic model for matter wh take place without a char heat of vaporisation is l npanies evaporation. Melting Throughout the substance at <u>fixed</u> temperature and	y nge in temperature, higher than specific lat Boiling :e, pressure	ent heat of fusion for the Evaporation On the surface, at <u>all</u> temperatures	
i.	Expla i. ii. iii.	ain using a simple kin Melting and boiling to The specific latent same substance, Cooling effect accor Occurrence Spacing(vol) & PE of molecules	etic model for matter wh take place without a char heat of vaporisation is I mpanies evaporation. Melting Throughout the substance at <u>fixed</u> temperature and Increase <u>slightly</u>	y nge in temperature, higher than specific lat Boiling ce, pressure Increase <u>significantly</u>	ent heat of fusion for the Evaporation On the surface, at <u>all</u> temperatures	
i.	Expla i. ii. iii.	ain using a simple kin Melting and boiling to The specific latent same substance, Cooling effect accor Occurrence Spacing(vol) & PE of molecules Temperature & hence KE of molecules	etic model for matter wh take place without a char heat of vaporisation is l mpanies evaporation. Melting Throughout the substance at <u>fixed</u> temperature and Increase <u>slightly</u> Remains constant during	y nge in temperature, higher than specific lat Boiling ce, pressure Increase <u>significantly</u> process	Evaporation On the surface, at <u>all</u> temperatures Decrease for remaining liquid	
i. j.	Expla i. ii. iii. Reca the h	ain using a simple kin Melting and boiling to The specific latent same substance, Cooling effect accor Occurrence Spacing(vol) & PE of molecules Temperature & hence KE of molecules	etic model for matter wh take place without a char heat of vaporisation is l mpanies evaporation. Melting Throughout the substanc at <u>fixed</u> temperature and Increase <u>slightly</u> Remains constant during w of thermodynamics exp and the work done on the	y nge in temperature, higher than specific lat Boiling ce, pressure Increase <u>significantly</u> process pressed in terms of the e system.	Evaporation On the surface, at all temperatures Decrease for remaining liquid change in internal energy,	
i. j.	Reca the ho First	Ain using a simple kin Melting and boiling to The specific latent same substance, Cooling effect accor Occurrence Spacing(vol) & PE of molecules Temperature & hence KE of molecules II and use the first lave eating of the system and Law of Thermodyname increase in internal energy of the system.	etic model for matter wh take place without a char heat of vaporisation is I mpanies evaporation. Melting Throughout the substance at <u>fixed</u> temperature and Increase <u>slightly</u> Remains constant during w of thermodynamics exp and the work done on the hics: rgy of a system is equal to	y nge in temperature, higher than specific lat Boiling Ce, pressure Increase significantly process pressed in terms of the e system. o the sum of the heat su	ent heat of fusion for the Evaporation On the surface, at <u>all</u> temperatures Decrease for remaining liquid change in internal energy, oplied to the system and the	
j.	Expla i. ii. iii. iii. <	ain using a simple kin Melting and boiling t The specific latent same substance, Cooling effect accor Occurrence Spacing(vol) & PE of molecules Temperature & hence KE of molecules II and use the first law eating of the system Law of Thermodynam ncrease in internal energione done on the system. U = W + Q where ncrease in internal energion at supplied to the system	etic model for matter wh take place without a char heat of vaporisation is l mpanies evaporation. Melting Throughout the substance at <u>fixed</u> temperature and Increase <u>slightly</u> Remains constant during w of thermodynamics exp and the work done on the hics: argy of a system is equal to ergy of the system stem	y nge in temperature, higher than specific lat Boiling ce, pressure Increase significantly process pressed in terms of the e system. o the sum of the heat su	ent heat of fusion for the Evaporation On the surface, at all temperatures Decrease for remaining liquid change in internal energy, oplied to the system and the	
j.	Expla i. ii. iii. iii. <	ain using a simple kin Melting and boiling to The specific latent same substance, Cooling effect accord Occurrence Spacing(vol) & PE of molecules Temperature & hence KE of molecules II and use the first law eating of the system Law of Thermodyname hcrease in internal energione done on the system U = W + Q where material supplied to the system at supplied to the system at supplied to recall the sign conversion	etic model for matter wh take place without a char heat of vaporisation is l mpanies evaporation. Melting Throughout the substance at <u>fixed</u> temperature and Increase <u>slightly</u> Remains constant during w of thermodynamics exp and the work done on the hics: wrgy of a system is equal to ergy of the system stem em	y nge in temperature, higher than specific lat Boiling ce, pressure Increase significantly process pressed in terms of the e system. o the sum of the heat su	ent heat of fusion for the Evaporation On the surface, at all temperatures Decrease for remaining liquid change in internal energy, oplied to the system and the	
j.	Expla i. ii. iii. iii. iii. Reca the h First The ii work 0 ie Δ Δ U: <u>II</u> Q: He W: wo {Need Work W = a For <u>co</u>	ain using a simple kin Melting and boiling to The specific latent is same substance, Cooling effect according Occurrence Spacing(vol) & PE of molecules Temperature & hence KE of molecules II and use the first law eating of the system Law of Thermodynam ncrease in internal energian done on the system. U = W + Q where ncrease in internal energian at supplied <u>to</u> the system at supplied to the system at one on the system at supplied to the system at one call the sign convariant on the system at one call the sign convariant pressure (isobation)	etic model for matter where the set of vaporisation is in the set of vaporisation is in the set of vaporisation. Melting Throughout the substance at fixed temperature and Increase slightly Remains constant during Remains constant during w of thermodynamics expand the work done on the set of the system is equal to the system set of a system is equal to set of the system set of a system is equal to set of the system set of a system is equal to set of the system set of a system is equal to set of the system set o	y nge in temperature, higher than specific lat Boiling ce, pressure Increase significantly process pressed in terms of the system. o the sum of the heat su o the sum of the heat su o the sum of the heat su	ent heat of fusion for the Evaporation On the surface, at all temperatures Decrease for remaining liquid change in internal energy, oplied to the system and the essed.	

	ΔU for a cycle = 0 {since U \propto T, & ΔT = 0 for a cycle }		
k.	Recall and use the ideal gas equation pV = nRT where n is the amount of gas in moles.		
	Equation of state for an ideal gas: p V = n R T, where T is in Kelvin {NOT: ⁰ C}, n: no. of moles. p V = N k T, where N: no. of molecules, k:Boltzmann const		
	······································		
I.	Show an understanding of the significance of the Avogadro constant as the number of atoms in 0.012 kg of carbon-12.		
	Avogadro constant: defined as the number of atoms in 12 g of carbon-12. It is thus the number of particles (atoms or molecules) in one mole of substance.		
m.	Use molar quantities where one mole of any substance is the amount containing a number of particles equal to the Avogadro constant.		
	?		
n.	Recall and apply the relationship that the mean kinetic energy of a molecule of an ideal gas is proportional to the thermodynamic temperature to new situations or to solve related problems.		
	For an ideal gas, internal energy U = Sum of the KE of the molecules only {since PE = 0 for ideal gas}		
	ie U = N x ¹ / ₂ m $\langle c^2 \rangle$ = N x $\frac{3}{2}$ kT {for monatomic gas}		
	 U depends on T and number of molecules N. U ∝ T for a given number of molecules 		
	Ave KE of a molecule, $\frac{1}{2}$ m <c<sup>2> \propto T { T in K: not ⁰C }</c<sup>		

SECTION IV WAVES

Cha	Chapter 10: Wave Motion				
	Progressive Waves Transverse and Longitudinal Waves				
	- Polarisation				
	- Det	ermination of frequency an	d wavelength		
а.	freque	an understanding and understanding and understanding and the	use the terms displacement, amplitude, phase difference, period, ed.		
	noquo	noj, natolongin una opo	5 VI		
	(a)	Displacement (y):	Position of an oscillating particle from its equilibrium position.		
	(b)	Amplitude (y ₀ or A):	The maximum magnitude of the displacement of an oscillating particle from its equilibrium position.		
	(c)	Period (T):	Time taken for a particle to undergo one complete cycle of oscillation.		
	(d)	Frequency (f):	Number of oscillations performed by a particle per unit time.		
	(e)	Wavelength (λ) :	For a progressive wave, it is the distance between any two <u>successive</u> particles that are <u>in phase</u> , e.g. it is the distance between 2 consecutive crests or 2 troughs.		
	(f)	Wave speed (v):	The speed at which the waveform travels in the direction of the propagation of the wave.		
	(g)	Wave front:	A line or surface joining points which are at the same state of oscillation, i.e. in phase, e.g. a line joining crest to crest in a wave.		
	(h)	Ray:	The path taken by the wave. This is used to indicate the direction of wave propagation. Rays are always at right angles to the wave fronts (i.e. wave fronts are always perpendicular to the direction of propagation).		
b.	Deduce	e, from the definitions of	speed, frequency and wavelength, the equation $v = f\lambda$		
	From th	ne definition of speed,	Speed = $\frac{\text{Distance}}{\text{Time}}$		
	A wave	travels a distance of one v	vavelength. λ . in a time interval of one period. T.		
	The fre	quency, <i>f</i> , of a wave is equ	al to $\frac{1}{7}$		
	Therefore, speed, $v = \frac{\lambda}{\Xi}$				
	$= \frac{1}{1}$				
			$= f\lambda$		
	Hence, $v = f\lambda$				
с.	Recall	and use the equation v =	fλ		
	F				
	Example 10C1 A wave travelling in the positive <i>x</i> direction is showed in the figure. Find the amplitude, wavelength, period, and speed of the wave if it has a frequency of 8.0 Hz.				

<u>Air column</u>

A tuning fork held at the mouth of a open tube projects a sound wave into the column of air in the tube. The length of the tube can be changed by varying the water level. At certain lengths of the tube, the air column resonates with the tuning fork. This is due to the formation of stationary waves by the <u>incident</u> and <u>reflected</u> sound waves at the water surface.

c. Explain the formation of a stationary wave using a graphical method, and identify nodes and antinodes.

Stationary (Standing) Wave) is one

- whose waveform/wave profile does not advance {move},
- where there is no net transport of energy, and
- where the positions of antinodes and nodes do not change (with time).

A stationary wave is formed when two <u>progressive</u> waves of the same <u>frequency</u>, <u>amplitude</u> and <u>speed</u>, travelling in <u>opposite directions</u> are superposed. {Assume boundary conditions are met}

	Stationary Waves	Progressive Waves
Amplitude	Varies from maximum at the anti-nodes to	Same for all particles in the wave
	zero at the nodes.	(provided no energy is lost).
Wavelength	Twice the distance between a pair of	The distance between two consecutive
	adjacent nodes or anti-nodes.	points on a wave, that are in phase.
Phase	Particles in the same segment/ between 2	All particles within one wavelength have
	adjacent nodes, are in phase. Particles in	different phases.
	adjacent segments are in anti-phase.	
Wave Profile	The wave profile does not advance.	The wave profile advances.
Energy	No energy is transported by the wave.	Energy is transported in the direction of
		the wave.

Node is a region of destructive superposition where the waves <u>always</u> meet <u>out of phase by π radians</u>. Hence displacement here is <u>permanently zero</u> {or minimum}.

Antinode is a region of constructive superposition where the waves <u>always</u> meet <u>in phase</u>. Hence a particle here <u>vibrates</u> with <u>maximum amplitude</u> {but it is NOT a pt with a *permanent* large displacement!}

Dist between 2 successive nodes/antinodes = $\frac{\Lambda}{2}$

<u>Max pressure change</u> occurs at the <u>nodes</u> {NOT the antinodes} because every node changes fr being a pt of compression to become a pt of rarefaction {half a period later}

d. Explain the meaning of the term diffraction.

j. Recall and solve problems by using the formula $dsin\theta = n\lambda$ and describe the use of a diffraction grating to determine the wavelength of light. (The structure and use of the spectrometer is not required.)

Diffraction: refers to the <u>spreading</u> {or bending} of waves when they pass through an <u>opening {gap}</u>, or <u>round an obstacle</u> (into the "shadow" region). {Illustrate with diag}

For significant diffraction to occur, the size of the gap $\approx \lambda$ of the wave

	Condition for Constructive Interference at a pt P:
	phase difference of the 2 waves at P = 0 {or 2π , 4π , etc}
	Thus, with 2 <i>in-phase</i> sources, * implies path difference = $n\lambda$; with 2 <i>antiphase</i> sources: path difference = $(n + \frac{1}{2})\lambda$
	Condition for Destructive Interference at a pt P:
	phase difference of the 2 waves at $P = \pi$ { or 3π , 5π , etc }
	With 2 <i>in-phase</i> sources, + implies path difference = (n+ $\frac{1}{2} \lambda$), with 2 <i>antiphase</i> sources: path difference = n λ
i.	Recall and solve problems using the equation $\lambda = \frac{\lambda D}{a}$ for double-slit interference using light.
i.	Recall and solve problems using the equation $\lambda = \frac{\lambda D}{a}$ for double-slit interference using light. Fringe separation $x = \frac{\lambda D}{a}$, if a< <d <i="" double="" interference="" of="" only="" slit="" to="" young's="" {applies="">light, le, NOT for microwaves, sound waves, water waves}</d>
i.	Recall and solve problems using the equation $\lambda = \frac{\lambda D}{a}$ for double-slit interference using light. Fringe separation $\mathbf{x} = \frac{\lambda D}{a}$, if a< <d <i="" double="" interference="" of="" only="" slit="" to="" young's="" {applies="">light, le, NOT for microwaves, sound waves, water waves} Phase difference $\Delta \phi$ betw the 2 waves at any pt X {betw the central & 1st maxima) is (approx) proportional to the dist of X from the central maxima. {NO1 & NO6}</d>

SECTION V ELECTRICITY & MAGNETISM

e. f.	Calculate the field strength of the uniform field between charged parallel plates in terms of potential difference and separation. Calculate the forces on charges in uniform electric fields.				
	N N				
	Uniform electric field between 2 Charged Parallel Plates: $E = \frac{V}{d}$,				
	d: perpendicular dist between the plates, V: potential difference between plates				
	Path of charge moving at 90 ⁰ to electric field: parabolic. Beyond the pt where it exits the field, the path is a <u>straight</u> line, at a <u>tangent</u> to the parabola at exit.				
	EXAMPLE 12E1 An electron (m = 9.11×10^{-31} kg; q = -1.6×10^{-19} C) moving with a speed of 1.5×10^7 m s ⁻¹ , enters a region between 2 parallel plates, which are 20 mm apart and 60 mm long. The top plate is at a potential of 80 V relative to the lower plate. Determine the angle through which the electron has been deflected as a result of passing through the plates.				
	+80 V				
	20 mm				
	$1.5 \times 10^7 \text{ m s}^{-1}$				
	0 V				
	Distance 60×10^{-3}				
	Time taken for the electron to travel 60 mm horizontally = $\frac{1000 \text{ K}^2/\text{S}}{\text{Speed}} = \frac{300 \text{ K}^2/\text{S}}{1.5 \times 10^7} = 4 \times 10^{-9} \text{ s}$				
	$E = \frac{V}{d} = \frac{80}{20 \times 10^{-3}} = 4000 \text{ V m}^{-1}$				
	$a = \frac{F}{m} = \frac{eE}{m} = \frac{(1.6 \times 10^{-19})(4000)}{(9.1 \times 10^{-31})} = 7.0 \times 10^{14} \text{ m s}^{-2}$				
	$v_y = u_y + at = 0 + (7.0 \times 10^{14})(4 \times 10^{-9}) = 2.8 \times 10^6 \text{ m s}^{-1}$				
	$\tan \theta = \frac{V_V}{V} = \frac{2.8 \times 10^6}{1.5 \times 10^7} = 0.187$				
	$\therefore \ \underline{\theta} = 10.6^{\circ}$				
g.	Describe the effect of a uniform electric field on the motion of charged particles.				
	- Equipotential surface: a surface where the electric potential is constant				
	 Potential gradient = 0, ie E along surface = 0 } 				
	 Hence no work is done when a charge is moved along this surface.{ W=QV, V=0 } 				
	- Electric field lines must meet this surface at right angles .				
	 {If the field lines are not at 90⁰ to it, it would imply that there is a non-zero component of E along the surface. This would contradict the fact that E along an equipotential = 0. } 				
h.	Define potential at a point in terms of the work done in bringing unit positive charge from infinity to the point.				
	Electric potential at a point: is defined as the work done in moving a unit positive charge from infinity to				
	that point, { a scalar; unit: V } ie V = $\frac{W}{Q}$				
	The electric potential at infinity is defined as zero. At any other point, it may be positive or negative depending on the sign of Q that sets up the field. {Contrast gravitational potential.}				
i.	State that the field strength of the field at a point is numerically equal to the potential gradient at that point				

	Relation between E and V: $E = -\frac{dV}{dr}$
	i.e. The electric field strength at a pt is numerically equal to the potential gradient at that pt.
	NB: Electric field lines point in direction of <u>decreasing</u> potential {ie from high to low pot}.
j.	Use the equation V = $\frac{Q}{4\pi\epsilon_0 r}$ for the potential in the field of a point charge.
	Electric potential energy U of a charge Q at a pt where the potential is V: $U = QV$ \rightarrow Work done W on a charge Q in moving it across a pd ΔV : $W = Q \Delta V$
	Electric Potential due to a <i>point</i> charge Q : $V = \frac{Q}{4\pi\epsilon_0 r}$ {in List of Formulae}
	{NB: Substitute Q with its sign}
k.	Recognise the analogy between certain qualitative and quantitative aspects of electric field and gravitational fields.
	See 7h

Cha	apter 13: Current of Electricity				
	- Electric current				
	- Resistance and Resistivity				
	- Sources of electromotive force				
а.	Show an understanding that electric current is the rate of flow of charged particles.				
	Electric current is the rate of flow of <i>charge.</i> {NOT: charged particles}				
b.	Define charge and coulomb.				
	Electric charge Q passing a point is defined as the product of the (steady) current at that point and the time for which the current flows, ie $Q = It$				
	One coulomb is defined as the charge flowing per <u>second</u> pass a point at which the current is <u>one ampere</u> .				
c.	Recall and solve problems using the equation Q = It.				
	EXAMPLE 13C1 An ion beam of singly-charged Na ⁺ and K ⁺ ions is passing through vacuum. If the beam current is 20 μ A, calculate the total number of ions passing any fixed point in the beam per second. (The charge on each ion is 1.6×10^{-19} C.)				
	Current, $I = \frac{Q}{t} = \frac{Ne}{t}$ where N is the no. of ions and e is the charge on one ion.				
	No. of ions per second $=\frac{N}{t}$				
	$=\frac{1}{e}$				
	$-\frac{20 \times 10^{-6}}{10}$				
	-1.6×10^{-19}				
	$= 1.25 \times 10$				
d.	Define potential difference and the volt.				
	Detential differences is defined as the anomaly transformed from electrical anomaly a then former of anomaly				
	when <u>unit</u> charge passes through an electrical device, ie $V = \frac{W}{Q}$				
	P. D. = Energy Transferred / Charge = Power / Current or, is the ratio of the power supplied to the device				
	to the current flowing, ie $V = \frac{1}{1}$				
	The volt: is defined as the potential difference between 2 pts in a circuit in which <u>one joule of energy is</u> <u>converted</u> from electrical to non-electrical energy when <u>one coulomb</u> passes from 1 pt to the other, ie 1 volt = One joule per coulomb				
	Difference between Potential and Potential Difference (PD): The potential at a point of the circuit is due to the amount of charge present along with the energy of the charges. Thus, the potential along circuit drops from the positive terminal to negative terminal, and potential differs from points to points.				
	Potential Difference refers to the difference in potential between any given two points. For example, if the potential of point A is 1 V and the potential at point B is 5 V, the PD across AB , or V_{AB} , is 4 V. In addition, when there is no energy loss between two points of the circuit, the potential of these points is same and thus the PD across is 0 V.				
e.	Recall and solve problems by using V = $\frac{W}{Q}$				
	EXAMPLE 13E1				

	Calculate					
	(a) The amount of charge passing through the bulb in 1 minute.					
	Charge Q = I t					
	$= 5 \times 10^{-3} \times 60$					
	= 0.3 C					
	(b) The work done to operate the bulb for 1 minute					
	Potential difference across the bulb = \overline{Q}					
	4 $=\frac{W}{0.3}$					
	Work done to operate the bulb for 1 minute $= 0.3 \times 4$					
	= 1.2 J					
f.	Recall and solve problems by using $P = VI$, $P = I^2R$.					
	Electrical Power, P = V I = $I^2 R = \frac{V^2}{P}$					
	n					
	{Brightness of a lamp is determined by the power dissipated, NOT: by V, or I or R alone}					
	EXAMPLE 13E1					
	A high-voltage transmission line with a resistance of 0.4 Ω km ⁻¹ carries a current of 500 A. The line is at a					
	potential of 1200 kV at the power station and carries the current to a city located 160 km from the power					
	station. Calculate					
	(a) the power loss in the line.					
	The power loss in the line P $-l^2 R$					
	$= 500^2 \times 0.4 \times 160$					
	= 16 MW					
	(b) the fraction of the transmitted power that is lost.					
	The total power transmitted = I V					
	$= 500 \times 1200 \times 10^{3}$					
	= 600 MW					
	The fraction of actual loss 16					
	The fraction of power loss = $\frac{600}{600}$					
	= 0.267					
g.	Define resistance and the ohm.					
	Resistance is defined as the ratio of the notential difference across a component to the current flowing					
	through it is $\mathbf{P} = \frac{\mathbf{V}}{\mathbf{V}}$					
	It is NOT defined as the gradient of a V-I graph; however for an obmic conductor, its resistance, equals the					
	gradient of its V-I graph as this graph is a straight line which passes through the origin}					
	The Ohm : is the resistance of a resistor if there is a current of 1. A flowing through it when the nd, across it					
	is 1 V, ie, 1 Ω = One volt per ampere					
_						
h.	Recall and solve problems by using V = IR.					
	EXAMPLE 13H1					
	In the circuit below, the voltmeter reading is 8.00 V and the ammeter reading is 2.00 A. Calculate the					
	resistance of K.					

EXAMPLE 13L1 Calculate the resistance of a nichrome wire of length 500 mm and diameter 1.0 mm, given that the resistivity of nichrome is $1.1 \times 10^{-6} \Omega$ m. $= \frac{\rho}{\Delta}$ Resistance, R $=\frac{(1.1 \times 10^{-6})(500 \times 10^{-3})}{\pi \left(\frac{1 \times 10^{-3}}{2}\right)^2}$ $= 0.70 \Omega$ Define EMF in terms of the energy transferred by a source in driving unit charge round a complete m. circuit. Electromotive force Emf is defined as the energy transferred/converted from non-electrical forms of energy into electrical energy when unit charge is moved round a complete circuit. ie EMF = Energy Transferred per unit charge, $=\frac{W}{Q}$ ie E Distinguish between EMF and P.D. in terms of energy considerations. n. EMF refers to the electrical energy generated from non-electrical energy forms, whereas PD refers to electrical energy being changed into non-electrical energy. For example, **Energy Change** PD across **Energy Change EMF Sources Chemical Cell** Chem -> Elec Elec -> Light Bulb Generator Mech -> Elec Fan Elec -> Mech Thermocouple Thermal -> Elec Door Bell Elec -> Sound Solar Cell Solar -> Elec Heating element Elec -> Thermal о. Show an understanding of the effects of the internal resistance of a source of EMF on the terminal potential difference and output power. Internal resistance is the resistance to current flow within the power source. It reduces the potential difference (not EMF) across the terminal of the power supply when it is delivering a current. Consider the circuit below: Internal resistance of (Cell) cell I R The voltage across the resistor, V = I R, The voltage lost to internal resistance = 1 rThus, the EMF of the cell, E = |R + |r= V + I r \therefore If I = 0 A or if r = 0 Ω , V = E

Chapter 14: D.C. Circuits

- **Practical Circuits**
- Series and parallel arrangements
- Potential divider
- **Balanced** potentials

Recall and use appropriate circuit symbols as set out in SI Units, Signs, Symbols and Abbreviations a. (ASE, 1981) and Signs, Symbols and Systematics (ASE, 1995).

Draw and interpret circuit diagrams containing sources, switches, resistors, ammeters, voltmeters, b. and/or any other type of component referred to in the syllabus.

Symbol	Meaning	Symbol	Meaning
+ 	Cell/ Battery		Thermistor
o o	Power Supply		Diode
	Switch		Potential Divider
A	Ammeter		Earth
	Voltmeter	Y	Aerial/ Antenna
	Galvanometer		Capacitor
$-\otimes$ -	Filament Lamp		Inductor
	Resistor		Wires crossing with no connection
	Variable Resistor		Wires crossing with connection
	Light-Dependent Resistor		Loudspeaker

c. d.

Solve problems using the formula for the combined resistance of two or more resistors in series. Solve problems using the formula for the combined resistance of two or more resistors in parallel.

Resistors in Series:

= R₁ + R₂ + ... R

Resistors in Parallel:

EXAMPLE 14CD1

Three resistors of resistance 2 Ω , 3 Ω and 4 Ω respectively are used to make the combinations X, Y and Z shown in the diagrams. List the combinations in order of increasing resistance.

Resistance for Z = $(\frac{1}{3} + \frac{1}{2} + \frac{1}{4})^{-1}$ = 0.923 Ω Therefore, the combination of resistors in order of increasing resistance is Z X Y. Solve problems involving series and parallel circuits for one source of e.m.f. e. EXAMPLE 14E1 **E.g. 4** Referring to the circuit drawn, determine the value of I₁, I and R, the combined resistance in the circuit. $E = I_1 (160) = I_2 (4000) = I_3 (32000)$ 2 V $= \frac{2}{160} = 0.0125 \text{ A}$ $= \frac{2}{4000} = 5 \times 10^{-4} \text{ A}$ $= \frac{2}{32000} = 6.25 \times 10^{-5} \text{ A}$ I_1 **160** Ω 1 I_2 Т I₃ 4000 Ω 12 Since $I = I_1 + I_2 + I_3$, I = 13.1 mAApplying Ohm's Law, $R = \frac{2}{13.1 \times 10^{-3}}$ 32000 Ω I_3 = 153 Ω EXAMPLE 14E2 A battery with an EMF of 20 V and an internal resistance of 2.0 Ω is connected to resistors R₁ and R₂ as shown in the diagram. A total current of 4.0 A is supplied by the battery and R₂ has a resistance of 12 Ω. Calculate the resistance of R_1 and the power supplied to each circuit component. $E - I r = I_2 R_2$ 2Ω $20 - 4(2) = I_2(12)$ $I_2 = 1A$ 20 V $I_1 = 4 - 1 = 3 A$ Therefore, 4 A R_1 $E - I r = I_1 R_1$ $12 = 3 R_1$ $R_1 = 4$ Therefore. R_2 = $(I_1)^2 R_1$ = 36 W Power supplied to R₁ Power supplied to R₂ $(I_2)^2 R_2$ = 12 W Show an understanding of the use of a potential divider circuit as a source of variable p.d. f. For potential divider with 2 resistors in series, Potential drop across R₁, $V_1 = \frac{R_1}{R_1 + R_2} X PD$ across R₁ & R₂ Potential drop across R₂, $V_1 = \frac{R_2}{R_1 + R_2} X PD$ across R₁ & R₂ EXAMPLE 14F1 Two resistors, of resistance 300 k Ω and 500 k Ω respectively, form a potential divider with outer junctions maintained at potentials of +3 V and -15 V.

When the galvanometer shows a zero reading, the current through the galvanometer (and the device that is being tested) is zero and the potentiometer is said to be "balanced".

If the cell has negligible internal resistance, and if the potentiometer is balanced,

EMF / PD of the unknown source, V =
$$\frac{L_1}{L_1 + L_2} \times E$$

EXAMPLE 14H1

In the circuit shown, the potentiometer wire has a resistance of 60 Ω . Determine the EMF of the unknown cell if the balanced point is at B.

	The <u>direction</u> of this force may be found by using Fleming's left hand rule. The angle θ determines the type of path the charged particle will take when moving through a uniform magnetic field:				
	• If $\theta = 0^\circ$, the charged particle takes a straight path since it is not deflected ($F = 0$)				
	• If $\theta = 90^{\circ}$, the charged particle takes a circular path since the force at every point in the path is perpendicular to the motion of the charged particle.				
	Since F is <u>always</u> be <u>perpendicular</u> to v {even if $\theta \neq 0$ },				
	the magnetic force can provide the centripetal force, \rightarrow Bqv = $\frac{mv^2}{r}$				
f.	Recall and solve problems using F = BQv sinθ.				
	EXAMPLE 15F1An electron moves in a circular path in vacuum under the influence of a magnetic field. x				
	The radius of the path is 0.010 m and the flux density is 0.010 T. Given that the mass of the electron is 9.11 x 10^{-31} kg and the charge on the electron is -1.6×10^{-19} C, determine				
	The magnetic force on the electron points towards the centre of the circular path; hence using Fleming's left hand rule, we deduce that the current I points to the left. The electron must be moving clockwise.				
	$\frac{\text{(ii)} \text{the velocity of the electron.}}{\text{Bqv}} = \frac{mv^2}{r}$				
	$v = \frac{Bqr}{m}$				
	$=\frac{(0.010)(1.6 \times 10^{-19})(0.010)}{9.11 \times 10^{-31}}$				
	$= 1.76 \times 10^7 \text{ m s}^{-1}$				
g.	Describe and analyse deflections of beams of charged particles by uniform electric and uniform magnetic fields.				
	Use Fleming's Left Hand Rule to analyse, then apply Parabolic Motion to analyse.				
h.	Explain how electric and magnetic fields can be used in velocity selection for charged particles.				
	Crossed-Fields in Velocity Selector:				
	A setup whereby an E-field and a B-field are <u>perpendicular</u> to each other such that they exert <u>equal & opposite forces</u> on a moving charge {if the velocity is "a certain value"}				
	I.e., if Magnetic Force = Electric Force B $\alpha v = \alpha E$				
	$v = \frac{E}{B}$				
	- -				
	Only particles with speed = $\frac{L}{B}$ emerge from the cross-fields <u>undeflected</u> .				
	For particles with speed > $\frac{E}{B}$, Magnetic Force > Electric Force				
	For particles with speed $< \frac{E}{B}$, Magnetic Force $<$ Electric Force				
i.	Sketch flux patterns due to a long straight wire, a flat circular coil and a long solenoid.				

EXAMPLE 15K1

A long length of aluminium foil ABC is hung over a wooden rod as shown below. A large current is momentarily passed through the foil in the direction ABC, and the foil moves.

(i) Draw arrows to indicate the directions in which AB and BC move

Since currents in AB and BC are 'unlike' currents (they are flowing in opposite directions), the two foil sections AB and BC will repel each other.

(ii) Explain why the foil moves in this way

The current in the left foil AB produces a magnetic field in the other (BC). According to the Right Hand Grip Rule & Fleming's Left Hand Rule, the force on BC is away from and perpendicular to AB. By a similar consideration, the force on AB is also away from BC. Thus the forces between the foils are repulsive.

Cha	pter 1	6: Electromagnetic Induction			
	- Magnetic flux				
a.	Define magnetic flux and the weber.				
	Elect cond Mag	tromagnetic induction refers to the phenomenon where an emf is induced when the magnetic flux linking a uctor changes. netic Flux is defined as the product of the magnetic flux density and the area <u>normal</u> to the field through a the field is passing. It is a passing the analytic and its S I, unit is the water (Wh)			
	writer	$\mathbf{b} = \mathbf{B} \mathbf{A}$			
	The	Weber is defined as the magnetic flux if a flux density of <u>one</u> tesla passes <u>perpendicularly</u> through an			
h	area	of <u>one square metre</u> .			
D.	Reca	an and solve problems using $\psi = BA$.			
	EXA A ma of the	MPLE 16B1 agnetic field of flux density 20 T passes down through a coil of of wire, making an angle of 60 [°] to the plane e coil as shown. The coil has 500 turns and an area of 25 cm ² . Determine:			
	<u>(i)</u>	the magnetic flux through the coil			
	4				
	Ψ	$= 20 \text{ (sin } 60^\circ) 25 \times 10^{-4}$			
		= 0.0433 Wb			
	(ii)	the flux linkage through the coil			
	Φ	$= N \phi$ = 500 × 0.0433 = 21.65 Wb			
C	Defir	ne magnetic flux linkage			
•					
	Magi the c	netic Flux Linkage is the product of the magnetic flux passing through a coil and the number of turns of oil.			
		$\Phi = N \phi = N B A$			
d.	Infer	from appropriate experiments on electromagnetic induction:			
	i.	That a changing magnetic flux can induce an e.m.f. in a circuit,			
		с К			
		In the set up shown above, when the switch S connected to coil A is closed, the galvanometer needle connected to coil B moves to 1 side momentarily.			
		And when the switch S is opened, the galvanometer needle moves to the other side momentarily.			
		At the instant when switch S is either opened or closed, there is a change in magnetic flux in coil A.			
		The movement in the needle of the galvanometer indicates that when there is a change in magnetic flux in coil A, a current passes through coil B momentarily. This suggests that an EMF is generated in			

		coil B momentarily.		
	ii.	That the direction of the induced e.m.f. opposes the change producing it,		
		See below		
	iii. The factors affecting the magnitude of the induced e.m.f.			
		When a magnet is pushed into a coil as shown, the galvanometer deflects in one direction momentarily.		
		When the magnet is not moving, the galvanometer shows no reading.		
		When the magnet is withdrawn from the coil, the galvanometer deflects in the opposite direction momentarily.		
		When the magnet is moved, its field lines are being "cut" by the coil. This generates an induced EMF in the coil that produces an induced current that flows in the coil, causing the deflection in the ammeter.		
		The magnitude of the deflection depends on the magnetic field density B, the speed of motion v of the magnet, and the number of turns N in the coil.		
е.	Reca	II and solve problems using Faraday's law of electromagnetic induction and Lenz's law.		
	<u>Fara</u> The r	day's Law nagnitude of <i>induced</i> EMF is directly proportional/equal to the rate of <u>change</u> of <i>magnetic flux-linkage</i> .		
		$ \mathbf{E} = \frac{\mathrm{d}NBA}{\mathrm{d}t}$		
	Lenz The c curre that p	' <u>s Law</u> direction of the induced EMF is such that <u>its effects</u> oppose the <u>change which causes it</u> , or The induced nt in a closed loop must flow in such a direction that its effects opposes the flux change {or change} produces it		
	EXAI Expla {Illust agen	MPLE 16E1 ain how Lenz's Law is an example of the law of conservation of energy: trate with diagram of a coil "in a complete circuit", bar magnet held in hand of a person {= external t)}		
	-	As the ext agent causes the magnet to approach the coil, by Lenz's law, a current is induced in such a direction that the coil repels the approaching magnet.		
	-	Consequently, work has to be done by the external agent to overcome this opposition, and		
		[A] = A [a] = b [
	-	It is this work done which is the source of the electrical <u>energy</u> {Not: induced emf}		
	- For a	It is this work done which is the source of the electrical <u>energy</u> {Not: induced emf} straight conductor "cutting across" a B-field: $\mathbf{E} = \mathbf{B} \mathbf{L} \mathbf{vsin} \theta$		

&	$E = N B A \omega \cos \omega t$, $E = N B A \omega \sin \omega t$,	if φ = BAsinωt if φ = BAcosωt	
{Wheth	er ϕ = BAsin ω t, or = BAcos	ωt, would depend o	on the initial condition}
The inc	duced EMF is the <u>negative</u>	<u>of the gradient</u> of	the $\phi \sim t$ graph {since E = $-\frac{dN\phi}{dt}$ }
\rightarrow the g	graphsofEvst & ∳vst,1	for the <u>rotating coil</u>	have a phase difference of 90° .
Explai	n simple applications of e	electromagnetic	induction.
Backg	round Knowledge		
Eddy C	urrents		
Eddy o magnet field.	currents are currents induced in ic field or metals that are exposed to	metals moving in a c a changing magnetic	
Conside	er a solid metallic cylinder rotating in	a B-field as shown.	
(a)	A force resisting the rotation w shown.	vould be generated as	
(b)	Heat would be generated by t cylinder.	the induced current in	F
Insulatio	on between the coins increases re	esistance and reduces	
eddy cu	on between the coins increases re irrent, thus reducing friction or heatin	isistance and reduces	
Applic	on between the coins increases re irrent, thus reducing friction or heatin ations of Eddy Currents Induction Cooker	isistance and reduces	
Applic	ations of Eddy Currents Induction Cooker	Changing n	nagnetic fields in the stove generate eddy currents in the metal pot placed on it, thus producing heat.
Applic	ations of Eddy Currents Induction Cooker	Changing n the base of	nagnetic fields in the stove generate eddy currents in the metal pot placed on it, thus producing heat.
Applic	ations of Eddy Currents Induction Cooker	Changing m the base of 1. The hig 2 Th	nagnetic fields in the stove generate eddy currents in the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces a gh-frequency electromagnetic field.
Applic 1	ations of Eddy Currents Induction Cooker	Changing m the base of 1. Th hig 2. Th ma	nagnetic fields in the stove generate eddy currents in the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces a gh-frequency electromagnetic field. e field penetrates the metal of the ferrous (magnetic aterial) cooking vessel and sets up a circulating eddy
Applic 1	ations of Eddy Currents Induction Cooker	Changing m the base of 1. The hig 2. The cur 3. The	nagnetic fields in the stove generate eddy currents in the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces a gh-frequency electromagnetic field. e field penetrates the metal of the ferrous (magnetic aterial) cooking vessel and sets up a circulating eddy rrent, which generates heat. e heat generated <i>in the cooking vessel</i> is transferred to
Applic 1	ations of Eddy Currents Induction Cooker	Changing m the base of 1. The hig 2. The ma cui 3. The the 4. No	nagnetic fields in the stove generate eddy currents in the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces a gh-frequency electromagnetic field. e field penetrates the metal of the ferrous (magnetic aterial) cooking vessel and sets up a circulating eddy rrent, which generates heat. e heat generated <i>in the cooking vessel</i> is transferred to e vessel's contents. whing outside the vessel is affected by the fieldas on as the vessel is removed from the element, or the
Applic 1	ations of Eddy Currents Induction Cooker	Changing m the base of 1. Th hig 2. Th cui 3. Th the 4. No soo ele	nagnetic fields in the stove generate eddy currents in the metal pot placed on it, thus producing heat. e element's electronics power a coil that produces a gh-frequency electromagnetic field. e field penetrates the metal of the ferrous (magnetic aterial) cooking vessel and sets up a circulating eddy rrrent, which generates heat. e heat generated <i>in the cooking vessel</i> is transferred to e vessel's contents. othing outside the vessel is affected by the fieldater on as the vessel is removed from the element, or the ement turned off, heat generation stops.

A pulsing current is applied to the coil, which then induces a magnetic field shown. When the magnetic field of the coil moves across metal, such as the coin in this illustration, the field induces electric currents (called eddy currents) in the coin. The eddy currents induce their own magnetic field, which generates an opposite current in the coil, which induces a signal indicating the presence of metal.

magnetic field through the secondary coil is no longer zero and changes with time, since the current is ac. The changing magnetic flux causes an induced voltage to appear in the secondary coil, which triggers the circuit breaker to stop the current. ELCB works very fast (in less than a millisecond) and turn off the current before it reaches a dangerous level.

5 Eddy current brake

An **eddy current brake**, like a conventional friction brake, is responsible for slowing an object, such as a train or a roller coaster. Unlike friction brakes, which apply pressure on two separate objects, eddy current brakes slow an object by creating eddy currents through electromagnetic induction which create resistance, and in turn either heat or electricity.

Consider a metal disk rotating clockwise through a perpendicular magnetic field but confined to a limited portion of the disk area. (Compare this with the Faraday's disk earlier)

Sector Oa and Oc are not in the field, but they provide return conducting path, for charges displaced along Ob to return from b to O. The result is a circulation of eddy current in the disk. The current experiences a magnetic force that opposes the rotation of the disk, so this force must be to the right. The return currents lie outside the field, so they do not experience magnetic forces. The interaction between the eddy currents and the field causes a braking action on the disk.

Cha	Chapter 17: Alternating Currents				
	Characteristics of alternating currents The transformer Bestification with a diade				
-	- Rectification with a diode				
а.	Show an understanding and use the terms period, frequency, peak value and root-mean squa value as applied to an alternating current or voltage.				
	••	· · · · ·			
	I / A (or V / V) ↑				
	3				
	o /				
	-3				
	Ι				
	Peak current, I ₀	= 3 A			
	Peak-to-peak current, I _{p-p}	= 6 A			
	Period, T	= 20 ms			
	Frequency, $f = \frac{1}{T}$	= 50 Hz			
		(This is the frequency of the mains supply in Singapore.)			
	Angular Frequency, ω	= $2 \pi f$ = 314 rad s ⁻¹			
	Instantaneous current:	the current at a particular instant.			
	Since this A.C. signal can be desc	ribed by the equation:			
	$\begin{split} I &= I_0 \sin \left(\omega \ t \right) \\ \text{or} & V &= V_0 \sin \left(\omega \ t \right) \end{split}$				
	the instantaneous curren	t I or voltage V at time t is given by $I_0 \sin(\omega t)$ or $V_0 \sin(\omega t)$.			
	Note: Both the period and amp	litude of a sinusoidal A.C should be constant .			
	Root-mean-square current of a produces the same heating effect	n alternating current is defined as that <u>steady {NOT <i>direct</i>}</u> current that {ie I ² R} as the alternating current <u>in a given resistor.</u>			
b.	Deduce that the mean power	in a resistive load is half the maximum power for a sinusoidal			
	alternating current.				
	(Instantaneous) sinusoidal curre	ent: $I = I_0 \sin \omega t$, {Similarly, $V = V_0 \sin \omega t$ }			
	$I_{\rm rms} = \frac{I_o}{\sqrt{2}}, V_{\rm rms} = \frac{V_o}{\sqrt{2}}, \text{ {for sinusoidal ac only}}$				
	Relationship between Peak, & RMS values of PD & Current: $V_0 = I_0 R$, $V_{rms} = I_{rms} R$				
	Mean/Ave Power, P _{ave}	= $I_{rms}^2 R = \frac{V_{rms}^2}{R} = I_{rms} V_{rms}$ = $\frac{1}{2} x$ Maximum Instantaneous Power = $\frac{1}{2} I_0 V_0$ {for sinusoidal AC}			
	Max (Instantaneous) Power, Pma	$I_{\rm IX} = I_0 V_0 = {I_0}^2 R$			
C.	Represent an alternating curren	t or an alternating voltage by an equation of the form $x = x_0 \sin \omega t$.			
	For sinusoidal current				

SECTION VI MODERN PHYSICS

Ch	apter 18:	Quantum Physics			
	- Ene	ergy of a photon			
	- The	e photoelectric effect			
	- Vvave-particle duality - Energy levels in atoms				
	- Energy levels in atoms - Line spectra				
	- Line spectra				
	- The	ay specifica			
	- Sch	ariodinger model			
	- Bar	rier tunnelling			
а.	Show a	n appreciation of the particulate nature of electromagnetic radiation.			
	A photo	on is a discrete packet {or quantum} of energy of an electromagnetic radiation/wave.			
b.	Recall	and use E = hf			
	Energy	of a photon, $\mathbf{E} = \mathbf{h} \mathbf{f} = \frac{\mathbf{h} \mathbf{c}}{\lambda}$ where h: Planck's constant			
	$\lambda_{\text{violet}} \approx 4$	1×10^{-7} m, $\lambda_{red} \approx 7 \times 10^{-7}$ m {N07P1Q34: need to recall these values}			
	Power	of electromagnetic radiation, P = Rate of incidence of photon x Energy of a photon = $\left(\frac{N}{t}\right)\frac{hc}{\lambda}$			
c.	Show a electron	an understanding that the photoelectric effect provides evidence for a particulate nature of magnetic radiation while phenomena such as interference and diffraction provide evidence			
f	for a wa	ave nature.			
••	Слріан	photoelectric phenomena in terms of photon energy and work function energy.			
	Photoe radiation	lectric effect refers to the <u>emission of electrons</u> from a cold <u>metal surface</u> when <u>electromagnetic</u> <u>n</u> of <u>sufficiently high frequency</u> falls on it.			
	<u>4 Major</u>	Observations:			
	(a)	No electrons are emitted if the frequency of the light is below a minimum frequency {called the threshold frequency }, regardless of the intensity of light			
	(b)	Rate of electron emission {ie photoelectric current} is proportional to the light intensity.			
	(c)	{Emitted electrons have a range of kinetic energy, <u>ranging from zero to a certain maximum value</u> . Increasing the freq increases the kinetic energies of the emitted electrons and in particular, increases the maximum kinetic energy.} This <u>maximum</u> kinetic energy depends only on the frequency and the metal used { ϕ }; the intensity has no effect on the kinetic energy of the electrons.			
	(d)	Emission of electrons begins instantaneously {i.e. no time lag between emission & illumination} even if the intensity is very low.			
		NB: (a), (c) & (d) cannot be explained by Wave Theory of Light; instead they provide evidence for the particulate/particle nature of electromagnetic radiation.			
	Explanation	ation for how photoelectric effect provides evidence for the particulate nature of em			
	{Consid evidence	er the observations (a), (c) & (d). Use <u>any 2</u> observations above to describe how they provide the the term radiation has a particle nature.}			
	-	According to the "Particle Theory of Light", em radiation consists of a stream of particles/photons/discrete energy packets, <u>each of energy hf</u> . Also, <i>no more than one electron can absorb the energy of one photon</i> {" <u>All-or-Nothing Law</u> ".}			
	-	Thus if the energy of a photon hf < the minimum energy required for emission (ϕ), no emission can take place no matter how intense the light may be. {E <i>xplains observation (a)</i> }			
	-	This also explains why, {even at very low intensities}, as long as $hf > \phi$, emission takes place without a time delay between illumination of the metal & ejection of electrons.{Explains observation			

i.	Describe and interpret qualitatively the evidence provided by electron diffraction for the wave nature of particles.
j.	Recall and use the relation for the de Broglie wavelength $\lambda = \frac{h}{p}$.
	Wave-Particle Duality Concept
	- Refers to the idea that light and matter {such as electrons} have both wave & particle properties.
	- The wavelength of an object is given by $\lambda = \frac{h}{p} \{p: \text{momentum of the particle.}\}$
	- Interference and diffraction provide evidence for the wave nature of E.M. radiation.
	- <u>Photoelectric effect</u> provides evidence for the <u>particulate nature</u> of E.M. radiation.
	- These evidences led to the concept of the wave-particle duality of light .
	Electron diffraction provides evidence that matter /particles have also a wave nature & thus, have a dual nature.
	de Broglie wavelength of a particle {"matter waves"}, $\lambda = \frac{h}{p}$
k. I.	Show an understanding of the existence of discrete electron energy levels in isolated atoms (e.g. atomic hydrogen) and deduce how this leads to spectral lines. Recall and solve problems using the relation $hf = E_1 - E_2$.
	Energy Levels of Isolated Atom:
	- Are <u>discrete</u> {i.e. can only have certain energy values.}
	- Difference between successive energy levels ΔE: <u>decreases</u> as we move from ground state upwards.
	Explain how existence of electron energy levels in atoms gives rise to line spectra {N03P3Q6, 4 m}
	- Energy levels are discrete.
	- During a downward transition, a photon is emitted.
	- Freq of photon $f = \frac{E_i - E_f}{h}$
	 Since E_i & E_f can only have discrete values, the freq are also discrete and so a line {rather than a spectrum is produced. {No need to mention role of spectrometer}
	2 common ways to cause Excitation of an atom:
	- When bombarded by an incident <u>electron</u> where KE of incident electron > Δ E
	i.e. $(\frac{1}{2} m_e u^2)_{before collision} = \Delta E + (\frac{1}{2} m_e v^2)_{after collision}$
	- Absorbing an incident <u>photon</u> of frequency f where h f must = Δ E exactly
	The energy level of the ground state gives the ionization energy , i.e. the energy needed to <u>completely</u> removes an electron initially in the <u>ground state</u> from the atom {i.e. to the energy level $n = \infty$, where $E_{\infty} = 0$ }.
١.	Distinguish between emission and absorption line spectra.
	Emission line spectrum: A series of discrete/separate bright lines on a dark background, produced by electron transitions within an atom from higher to lower energy levels and emitting photons.
	An excited atom during a downward transition emits a photon of frequency f, such that $E_i - E_f = h f$

	Absorption line spectrum: A continuous bright spectrum crossed by "dark" lines. It is produced when "white light" passes through a <u>cool</u> gas. Atoms/electrons of the cool gas absorb photons of certain frequencies and get excited to higher energy levels which are then quickly <u>re-emitted in all directions</u> .
n.	Explain the origins of the features of a typical X-ray spectrum using quantum theory.
	Characteristic X-rays : produced when <u>an electron is knocked out</u> of an inner shell of a target metal atom, allowing <u>another electron from a higher energy level to drop down to fill the vacancy</u> . The x-rays emitted have <u>specific</u> wavelengths, determined by the discrete energy levels which are <u>characteristic of the target atom</u> .
	Continuous X-ray Spectrum {Braking Radiation (Bremsstrahlung)} : produced when <u>electrons</u> are <u>suddenly decelerated</u> upon collision with atoms of the metal target.
	Minimum λ of cont. spectrum λ_{min} : given by $\frac{hc}{\lambda_{min}} = eV_a$, V_a : accelerating pd of x-ray tube
0.	Show an understanding of and apply the Heisenberg position-momentum and time-energy uncertainty principles in new situations or to solve related problems.
	Heisenberg Uncertainty Principles : If a measurement of the position of a particle is made with uncertainty Δx and a <u>simultaneous</u> measurement of its momentum is made with uncertainty Δp , the product of these 2 uncertainties can peyer be smaller than $\frac{h}{\Delta x}$
	4π
	i.e. Δx Δp ≥ <u>h</u> 4π
	Similarly $\Delta E \Delta t \ge \frac{h}{4\pi}$ where E is the energy of a particle at time t
р.	Show an understanding that an electron can be described by a wave function ψ where the square of the amplitude of wave function $ \psi ^2$ gives the probability of finding the electron at a point. (No mathematical treatment is required.)
	A particle can be described by a wave function Ψ where the <u>square of the amplitude</u> of wave function, $I\Psi I^2$, is proportional to the <u>probability</u> of finding the particle at a point.
q.	A particle can be described by a wave function Ψ where the <u>square of the amplitude</u> of wave function, $ \Psi ^2$, is proportional to the <u>probability</u> of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the phenomenon of quantum tunnelling of an electron across such a barrier.
q.	A particle can be described by a wave function Ψ where the <u>square of the amplitude</u> of wave function, IΨ I ² , is proportional to the <u>probability</u> of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the phenomenon of quantum tunnelling of an electron across such a barrier.
q.	 A particle can be described by a wave function Ψ where the square of the amplitude of wave function, IΨ I², is proportional to the probability of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the phenomenon of quantum tunnelling of an electron across such a barrier. Potential barrier A region of electric field that prevents an atomic particle like an electron on one side of the barrier from passing through to the other side.
q.	 A particle can be described by a wave function Ψ where the square of the amplitude of wave function, IΨ I², is proportional to the probability of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the phenomenon of quantum tunnelling of an electron across such a barrier. Potential barrier A region of electric field that prevents an atomic particle like an electron on one side of the barrier from passing through to the other side. OR
q.	 A particle can be described by a wave function Ψ where the square of the amplitude of wave function, IΨ I², is proportional to the probability of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the phenomenon of quantum tunnelling of an electron across such a barrier. Potential barrier A region of electric field that prevents an atomic particle like an electron on one side of the barrier from passing through to the other side. OR A region where the potential energy of a particle, if it is placed there, is greater than the total energy of the particle.
q.	 A particle can be described by a wave function Ψ where the square of the amplitude of wave function, IΨ I², is proportional to the probability of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the phenomenon of quantum tunnelling of an electron across such a barrier. Potential barrier A region of electric field that prevents an atomic particle like an electron on one side of the barrier from passing through to the other side. OR A region where the potential energy of a particle, if it is placed there, is greater than the total energy of the particle. Hence the particle would experience an opposing force if it tries to enter into the potential barrier
q.	 A particle can be described by a wave function Ψ where the square of the amplitude of wave function, IΨ I², is proportional to the probability of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the phenomenon of quantum tunnelling of an electron across such a barrier. Potential barrier A region of electric field that prevents an atomic particle like an electron on one side of the barrier from passing through to the other side. OR A region where the potential energy of a particle, if it is placed there, is greater than the total energy of the particle. Hence the particle would experience an opposing force if it tries to enter into the potential barrier Describe the application of quantum tunnelling to the probing tip of a scanning tunnelling microscope (STM) and how this is used to obtain atomic-scale images of surfaces. (Details of the structure and operation of a scanning tunnelling microscope are not required.)
q.	 A particle can be described by a wave function Ψ where the square of the amplitude of wave function, IΨI², is proportional to the probability of finding the particle at a point. Show an understanding of the concept of a potential barrier and explain qualitatively the phenomenon of quantum tunnelling of an electron across such a barrier. Potential barrier A region of electric field that prevents an atomic particle like an electron on one side of the barrier from passing through to the other side. OR A region where the potential energy of a particle, if it is placed there, is greater than the total energy of the particle. Hence the particle would experience an opposing force if it tries to enter into the potential barrier Describe the application of quantum tunnelling to the probing tip of a scanning tunnelling microscope (STM) and how this is used to obtain atomic-scale images of surfaces. (Details of the structure and operation of a scanning tunnelling microscope are not required.) Quantum tunnelling: A quantum-mechanical process whereby a particle penetrates a classically forbidden region of space, i.e. the particle goes through a potential barrier even though it does not have enough energy to overcome it. Due to the wave nature of a particle, there is a non-zero probability that the particle is able to penetrate the potential barrier.

	scanned.	
	- <u>Quantu</u> - <u>Magnit</u> - There	<u>um tunnelling</u> allows electrons to overcome the potential barrier between tip & material ude of tunnelling current is dependent on the dist betw the tip and the surface. are two methods to obtain images of the surface of the material:
	(1) Ma (2) Ma	aintain the tip at constant height and measure the tunnelling current aintain a constant tunnelling current and measure the (vertical) position of the tip.
	(A feedback de scanned over th the material.)	vice adjusts the vertical height of the tip to keep the tunnelling current const as the tip is the surface {Method 2}). The output of the device provides an image of the surface contour of
S.	Apply the relat solve problems	ionship transmission coefficient T \propto exp(-2kd) for the STM in related situations or to s. (Recall of the equation is not required.)
	Transmission	coefficient (T): measures the <u>probability</u> of a particle <u>tunnelling</u> through a barrier.
		$k = \sqrt{\frac{8\pi^2 m(U - E)}{h^2}} $ {given in Formula List}
	2 k.d	d: the thickness of the barrier in metres
	$T = e^{-2\kappa u}$	m: mass of the tunnelling particle in kg
		U: the "height" of the potential barrier in J {NOT: eV}
		E: the energy of the electron in J
		n: The Planck's constant
+	Recall and us	e the relationship $R + T = 1$ where R is the reflection coefficient and T is the
	transmission c	oefficient, in related situations or to solve problems.
	Reflection coef	ficient (R): measures the probability that a particle gets reflected by a barrier.
		T + R = 1

Cha	pter 19: Lasers and Semi	conductors			
	 Energy bands, conduct 	ctors and insulators			
	 Semiconductors Depletion region of a p 	p-n junction			
а.	Recall and use the terms spontaneous emission, stimulated emission and population inversion in				
	Chanteneous emission	A process whereby a photon is amitted when an electron in an evolted stam falls			
	Spontaneous emission:	<u>naturally</u> to a lower energy level, i.e. <u>without requiring an external event to trigger</u> <u>it.</u>			
	Stimulated emission:	A process whereby an <u>incoming photon</u> causes/induces another photon of the <u>same frequency & phase</u> (& direction) to be emitted from an excited atom.			
	Laser:	A monochromatic, coherent, parallel beam of high intensity light.			
	Meta stable state:	An excited state whose lifetime is much longer than the typical (10 ⁻⁸ s) lifetime of excited states.			
	Population inversion:	A condition whereby there are more atoms in an excited state than in the ground state.			
	{A <u>meta stable</u> state is ea achieved, which, in turn, <u>i</u>	ssential for laser production because it is required for <u>population inversion</u> to be <u>ncreases the probability of stimulated emissions</u> .}			
b.	Explain the action of a	laser in terms of population inversion and stimulated emission. (Details of			
	the structure and operation	tion of a laser are not required.)			
	Conditions to achieve L	aser action:			
	a. Atoms of the lase	er medium must have a meta-stable state. st be in a state of population inversion			
	c. The emitted pho reaction of stimu	tons must be confined in the system long enough to allow them to cause a chain lated emissions from other excited atoms.			
с.	Describe the formation	of energy bands in a solid.			
	Formation of Energy Ba	nds in a Solid/Band theory for solids:			
	- Unlike the case of	of an <i>isolated atom</i> , in a <i>solid</i> , the atoms are <u>very much closer</u> to each other.			
	- This allows the e	lectrons from neighbouring atoms to interact with each other.			
	- As a result of this	s interaction, each discrete energy level that is associated with an isolated atom is			
	<u>split</u> into many si {This is in accord same energy sta	ub-levels. dance to Pauli Exclusion Principle which states that: no 2 electrons can be in the te}			
	- These sub-levels {In other words, close together.}	s are <u>extremely close</u> to one another such that they form an <u>energy band</u> . an energy band consists of a very large number of energy levels which are very			
d.	Distinguish between con	nduction band and valence band.			
	Valence Band:	The highest energy band that is completely filled with electrons.			
	Conduction Band:	The <u>next higher</u> band; For some metals/ good conductors, it is <u>partially-filled;</u> For other metals, the VB & CB <u>overlap</u> {hence it is also <u>partially-filled</u> }			
	Energy Gap	A region where no energy state can exist;			
	{Forbladeri Band}	it is the energy difference between the CB & VB			

e. Use band theory to account for the electrical properties of metals, insulators and intrinsic semiconductors, with reference to conduction electrons and holes.

Properties of Conductors, Insulators and Semi-conductors at 0 K {"low temp"}:

	Conductors	Insulators	Semi-conductors
Conduction Band	Partially filled	Empty	
Valence Band	Completely Occupie	d	
Energy gap between the bands	NA	Large (≈10 eV)	Small (≈1 eV)
Charge Carriers	free electrons	-	free electrons & holes

How band theory explains the relative conducting ability of a metal, intrinsic semiconductor & insulator:

- For a (good)*conductor* {ie a metal}, when an electric field is applied, electrons in the <u>partially-filled</u> <u>conduction band</u> can <u>very easily</u> gain energy from the field to "jump" to unfilled energy states since they are <u>nearby</u>.
- The ease at which these electrons may move to a nearby unfilled/unoccupied energy state, plus the fact that there is a high number density of free electrons make metals very good electrical conductors.
- For an insulator, the conduction band is <u>completely unoccupied</u> by electrons; the valence band is <u>completely occupied</u> by electrons; and the <u>energy gap between the two bands is very large.</u>
- Since the conduction band is **<u>completely empty</u>**, and
- It requires a lot of energy to excite the electrons from the valence band to the conduction band across the <u>wide energy gap</u>,
- When an electric field is applied, no conduction of electricity occurs. {Thus, insulators make poor conductors of electricity.}
- For *intrinsic semi-conductors*, the <u>energy gap</u> between the two bands is <u>relatively small</u> {compared to insulator}
- As such even at room temp, some electrons in the valence band gain enough energy by <u>thermal</u> <u>excitation</u> to jump to the unfilled energy states in the conduction band, leaving vacant energy states in the valence band known as holes.
- When an electric field is applied, the electrons which have jumped into the conduction band and holes {in the valence band} act as *negative* and *positive* charge carriers respectively and conduct electricity.
- {Thus, for *intrinsic* semiconductors, the ability to conduct vary with temperature {or even light}, as light can cause photo-excitation}.

t.	Analyse qualitatively how n- and p-type doping change the conduction properties of semiconductors.
	Doping:
	- Refers to the addition of impurity atoms to an intrinsic semiconductor to modify the number and type of charge carriers.
	 n-type doping increases the no. of free {NOT: valence } electrons; p-type doping increases the no. of holes.
	 Note that, even with a very small increase in the dopants, the electrical resistivity of an extrinsic semiconductor decreases <u>significantly</u> because the number of charge carriers of the intrinsic semiconductor is typically <u>very small</u>.
	Explain why electrical resistance of an intrinsic semiconductor material decreases as its temper rises, (N08P2Q5, 4 m)
	(Based on the band theory, a semiconductor has a completely filled valence band and an empty conduction band with a small energy gap in between. Hence there are no charge carriers and the electrical resistance is high.)
	(1) When temperature is low, electrons in the valence band do not have sufficient energy to jump across the energy gap to get into the conduction band.
	(2) When temperature rises, electrons in the valence band receive thermal energy to enter into the conduction band leaving holes in the valence band.
	(3) Electrons in the conduction band & holes in the valence band are mobile charge carriers and can contribute to current.
	(4) Increasing the number of charge carriers means lower resistance.
	2 Differences between p-type silicon & n-type silicon:
	 In n-type Si, the <u>majority charge carrier</u> is the electron, its <u>minority charge carrier</u> is the hole. For p-type Si, the situation is reversed.
	 In n-type Si, the dopants are typically pentavalent atoms (having 5 valence electrons); In p-type Si, the dopants are typically trivalent atoms (valency = 3)
g.	Discuss qualitatively the origin of the depletion region at a p-n junction and use this to explain how a p-n junction can act as a rectifier.
	Origin of Depletion Region
	How a p-n junction can act as a rectifier
	 When a p-n junction diode is connected in <u>reverse bias</u> in a circuit, the negative terminal of the battery pulls holes from the p-type semiconductor leaving behind more negatively-charged acceptor ions. At the same time the positive terminal pulls electrons from the n-type semiconductor leaving behind more positively-charged donor ions.
	- This results in the <u>widening of the depletion region</u> and <u>an increase in the height of the potential</u> <u>barrier</u> , and so no current flows.
	- When a p-n junction diode is connected in a forward-bias connection in a circuit, the externally applied pd opposes the contact pd across the depletion region.
	 If the <u>externally applied pd</u> is great enough, it <u>supplies energy to the holes and electrons to</u> <u>overcome the potential barrier</u> and, so a current will flow. {In general, a forward-bias connection <u>narrows the depletion region</u> and <u>reduces the height of the potential barrier.}</u>
	{Thus a p-n junction {diode} allows current to flow in one direction only {when the p-n junction is in forward bias} and so, it can be used as a rectifier to rectify an ac to dc}

	Isotopes: are <u>atoms</u> with the same proton number, but different nucleon number {or different no of neutrons}					
d.	Use the usual notation for the representation of nuclides and represent simple nuclear reactions by nuclear equations of the form ${}^{14}_7$ N + ${}^{4}_2$ He $\rightarrow {}^{17}_8$ O + ${}^{1}_1$ H.					
	Self-Explanatory					
e. f.	Show an understanding of the concept of mass defect. Recall and apply the equivalence relationship between energy and mass as represented by $E = mc^2$ in problem solving.					
g. i.	Show an understanding of the concept of binding energy and its relation to mass defect. Explain the relevance of binding energy per nucleon to nuclear fusion and to nuclear fission.					
	Energy & Mass are Equivalent: $E = mc^2 \rightarrow \Delta E = (\Delta m)c^2$					
	Nuclear Binding Energy:					
	 Energy that must be supplied to completely separate the nucleus into its individual nucleons/particles. 					
	OR					
	- The energy released {not <i>lost</i> } when a nucleus is formed from its constituent nucleons.					
	B.E. per nucleon is a measure of the <u>stability</u> of the nucleus.					
	Mass Defect : The difference in mass between a nucleus and the total mass of its individual nucleons = $Zm_p + (A-Z)m_n - Mass$ of Nucleus					
	Thus, Binding Energy. = Mass Defect × c ²					
	In both nuclear fusion and fission, products have <u>higher</u> B.E. per nucleon {due to shape of BE per nucleon-nucleon graph}, energy is released {not <i>lost</i> } and hence products are <u>more stable</u> .					
	Energy released = Total B.E. after reaction (of products) - Total B.E. before reaction (ie of reactants)					
	Nuclear fission: The disintegration of a heavy nucleus into 2 lighter nuclei. Typically, the fission fragments have approximately the <u>same mass</u> and <u>neutrons are emitted</u> .					
h.	Sketch the variation of binding energy per nucleon with nucleon number.					
	Fig below shows the variation of BE per nucleon plotted against the nucleon no.					

		Region of greatest stability				
	Binding energy per narricle MeV	9.0 8.0 7.0 6.0 5.0 4.0 8.0				
		3.0 Iron-56 Uranium-238 1.0 50 100 150 200 250				
	© 2003	B Thomson - Brooks Cole Nucleon no				
	Warning!!! Graph is	NOT symmetrical.				
j.	State and apply to mass are all conser	problem solving the concept that nucleon number, proton number, energy and ved in nuclear processes.				
	Principle of Conservation of Energy-Mass:					
	Total energy	y-mass before reaction = Total energy-mass after reaction				
	ie, $\sum (m c^2 + \frac{1}{2} m v^2)_{\text{reactants}} = \sum (m c^2 + \frac{1}{2} m v^2)_{\text{products}} + h f \{\text{if } \gamma\text{-photon emitted}\}$					
	Energy released in nuclear reaction= $\Delta m c^2$ = (Total rest mass before reaction – Total rest mass after reaction) × c^2					
k. I.	Show an understanding of the spontaneous and random nature of nuclear decay. Infer the random nature of radioactive decay from the fluctuations in count rate.					
	Radioactivity is the <u>spontaneous</u> and <u>random</u> decay of an unstable nucleus, with the emission of an <i>alpha</i> or <i>beta</i> particle, and is usually accompanied by the emission of a <i>gamma</i> ray photon.					
	Spontaneous: The	e emission is not affected by factors outside the nucleus				
	Random: It cannot be predicted when the next emission will occur {Evidence in fluctuation in count-rate}					
	Decay law: $\frac{dN}{dt} = -\lambda N$, where N= No. of undecayed { active } nuclei at that instant;					
	\rightarrow N = N ₀ e ^{-λ t} ; A =	= $A_0 e^{-\lambda t}$; $C = C_0 e^{-\lambda t}$: {in List of Formulae}				
m.	Show an understan	ding of the origin and significance of background radiation.				
	Background radiation	on refers to radiation from sources other than the source of interest.				
	→ True count rate = Measured count rate – Background count rate					

n.	Show an understanding of the nature of α , β and γ radiations.						
	Nature of α.β. & γ {J2008P2Q7 4 m}						
		<u></u>					
	Nototion	Alpha Particles	Beta particles	Gamma Particles			
	Notation	α	β	Y No sharra			
	Mass	+ 20	- e 1/1840 u	No charge			
	Naturo	Au Bortiolo (Ho puoloup)	1/1640 u Dortiolo (oloctrop	Flootromagnotio			
	Nature		emitted from nucleus}	Radiation			
	Speed	Monoenergetic (i.e. one speed only)	Continuous range (up to approximately 98% of light)	С			
0.	Define the terms activit	y and decay constant and r	ecall and solve problems	using A = λ N.			
	Decay constant λ is defined as the probability of decay of a nucleus <u>per unit time</u> {or,the fraction of the total no. of undecayed nuclei which will decay per unit time. } Activity is defined as the rate at which the nuclei are disintegrating. $A = \frac{dN}{dt} = \lambda N$						
		\rightarrow A ₀ = λ N ₀					
p.	Infer and sketch the exponential nature of radioactive decay and solve problems using the relationship $x = xoexp(-\lambda t)$ where x could represent activity, number of undecayed particles and received count rate.						
	Number of undecayed	nuclei ∞ Mass of sample					
	\rightarrow Number of nuclei in sample = $\frac{\text{Sample Mass}}{\text{Mass of 1 mol}} \times N_A$						
where, Mass of 1 mol of nuclide= Nucleon No {or relative atomic mass} expressed in grams {NC							
<pre>{Thus for eg, mass of 1 mole of U-235 = 235 g = 235 x 10⁻³ kg, NOT: 235 kg} Application of PCM to radioactive decay (N08P3Q7b(iv)) It is useful to remember that when a stationary nucleus emits a single particle, by PCM, after t ratio of their KE = ratio of their speeds, which in turn,</pre>							
						q.	Define half-life.
	Half-life is defined as the <u>average</u> time taken for <u>half</u> the <u>number</u> {not: mass or amount} of undecayed nuclei in the sample to disintegrate,						
	or, the <u>average</u> time taken for the <u>activity</u> to be halved.						
	$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$ {in List of Form	ulae}					
r.	Solve problems using t						
	EXAMPLE 20R1 Antimony-124 has a half-life of 60 days. If a sample of antimony-124 has an initial activity of 6.5×10^{6} Bq, what will its activity be after 1 year (365 days)?						
	Using $A = A_0 e^{-\lambda t}$	eqn (4) & $t_{1/2} = \frac{\ln 2}{\lambda}$					

	s.	Discuss qualitatively the effects, both direct and indirect, of ionising radiation on living tissues and cells.				
		Radiation damage to biological organisms is often categorized as: somatic and genetic.				
		<u>Somatic damage</u> refers to any part of the body except the reproductive organs. Somatic damage <u>harms that particular organism</u> <u>directly</u> . Some somatic effects include radiation sickness (nausea, fatigue, and loss of body hair) and burns, reddening of the skin, ulceration, cataracts in the eye, skin cancer, leukaemia, reduction of white blood cells, death, etc.				
<u>Genetic damage</u> refers to damage to reproductive organs. Genetic effects cause <u>mutations</u> in the reproductive cells and so affect <u>future generations</u> – hence effects are <u>indirect</u> . (Such mutations may contribute to the formation of a cancer.)						
Alternatively,						
		- Ionising radiation may damage living tissues and cells <u>directly</u> .				
		 It may also occur <u>indirectly</u> through chemical changes in the surrounding medium, which is mainly water. For example, the ionization of water molecules produces OH free radicals which may react to produce H₂O₂, the powerful oxidizing agent hydrogen peroxide, which can then attack the molecules which form the chromosomes in the nucleus of each cell. 				